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_ + Chapter I

,.,. Introduction and Summary:,.:,.

++-:
+.. -.+I.

nro1.1 Summary--n'nd-u

The purpose of this study was to develop analytical and computational
techniques for performance evaluation of Autonomously Guided Platforms
with Multiple Sensors (AGPMS).

The fundamental principles used are: modeling of the many feedback
sensors, modeling of the sensor data, advanced estimation and detection
techniques, sensor scheduling problems, regulator theory and design, stochas-
tic control techniques, careful analysis of multiple time scales.

When multiple sensors are present, such as radar, various types of IR
sensors and others, one has to consider carefully the "fusion of the data N
from the various sensors in a dynamically changing environment. These

, problems are essential in the success of the overall design and have not been ,_-
investigated systematically before with dynamic signal models.

Design of tracking control loops for each sensor class is a stochastic
control problem (not just a nonlinear filtering problem). When all loops

Z 1 are treated simultaneously, simplifications in the analysis and the resulting
implementation occur when one exploits the different time scales present in
the various feedback loops.

In addition, AGPMS must have an adaptive control-decision: sensors V.
employed have diverse performance characteristics. This fact necessitates a

, '" careful analysis of sensor models and target representations in those sensor
' models.

The techniques and models used in our analysis are fairly sophisticated,
'_ vis-a-vis the classical treatment of these problems. In the classical treatment,

* one ignores the combined performance index for missile guidance and

tracking loops which ib the

III .#*

* -,%



" miss distance at interception, and instead one considers separately several - f

subproblems:

(a) selection of guidance loop configuration,

4~ (b) setting loop gains for steady state accuracy requirements,
•, (e) stabilization for acceptable "gain and phase margins', and

(d) study effects of noise and parametric uncertainties.

is One iterates through this sequence of subproblems in the order described
until a satisfactory design is achieved. This approach has many deficiencies. *.

In this research, we exploit stochastic control and estimation to study several
interrelated problems.

- In Chapter 2, we consider the design of pointing and tracking servomech-anisms for a seeker using an imaging FLIR with a gimbaled platform from

-, -. a more or less conventional perspective. We specifically consider the appli- ., -...
cation of classical, single-input single-output servo theory and the extended
Kalman filter techniques. Our intent is to establish a basis for meaningful
comparison of the performance improvement achieved with the nonlinear
stochastic control theory which is the main subject of this research project.
Performance objectives for these systems are stated primarily in classical %or
terms, and it is essential to fully appreciate their intent and their implica- %
tions in order to formulate well posed stochastic control problems which are .

meaningful in the context of this application.
In Chapter 3, we summarize our research in stochastic control theory

' "relevant to tracking and missile guidance problems. Two classes of problems
are addressed: (i) optimal stochastic control of nonlinear systems with "fast"
and "slow" states; and (ii) stochastic scheduling and stability of systems
(linear and nonlinear) with Poisson noise disturbances (in the coefficients).

The work on (i) has been led to a rather complete theory for singularly
perturbed optimal stochastic control problems. The theory encompasses

-- 'several classes of models, including systems with states taking values in
bounded sets (e.g., angular variables) and systems with unbounded states.

. Stability criteria for the "fast" states play a key role in the second class..
of systems. Our main focus is on the existence and nature of "composite"
control laws for the fast and slow subsystems like those defined by Chow and
Kokotovic for singularly perturbed deterministic control problems. One of
the most important findings of this research is that composite control laws
for singularly perturbed stochastic control problems generally do not exist

2
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in the simple form suggested by the deterministic case. In fact, the limiting
optimal control law for the slow subsystem retains a dependence on the, I
states of the fast subsystem.

Stochastic control problems with fast and slow states are common in the P_
design and evaluation of tracking loops and missile guidance systems. They
occur whenever it is necessary to retain the interdependence of subsystems
operating on different time scales (e.g., sampling rates) such as the inter-
action of sensor tracking loops and guidance control loops in autonomously
guided missiles. I

The second class of problems treated in this chapter concerns stochastic
dynamical systems with Poisson noise disturbances. These systems arise as
models of physical processes with intermittent noise disturbances. We have
obtained results on the control, scheduling, and stability of such systems.
The control results are not discussed here. The results on scheduling are
primarily concerned with the derivation of optimality conditions and the
verification that these conditions are well posed.

a We also consider the asymptotic stability of linear systems with Poisson
noise coefficients. Criteria for stability of the moments of such systems have -
been available for some time. As is the case with diffusion processes, criteria
for almost sure stability of the sample paths are much more delicate. In the
present case, a key result is a deep theorem of Furstenburg on the (ergodic)
limit properties of products of random matrices. This result allows us to
develop an exact expression for the asymptotic, exponential growth (decay) ,,
rate of the paths in terms of an ergodic measure. We give several examples
to illustrate the nature of the computations and criteria. We also give tight

p. estimates on the probability of a large deviation in a stable process; and
we give a condition for stabilization of linear systems with state and control "-
dependent Poisson noises.

In Chapter 4, we consider the problem of simultaneous detection and
estimation when the signals corresponding to the M different hypotheses
can be modelled as outputs of M distinct stochastic dynamical systems of
the Ito type. Under very mild assumptions on the models and on the cost '-

structure, we show that there exists a set of sufficient statistics for the simul-
taneous detection-estimation problem that can be computed recursively by
linear equations. Furthermore, we show that te structure of the detector nd
estimator is completely determined by the cost structure. The methodology
used employs recent advances in nonlinear filtering and stochastic control of
partially observed stochastic systems of the Ito type. Specific examples and .- ."

applications in radar tracking and discrimination problems are discussed. .

.. '-,.. .. ,
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" ~Chapter 2":"

! . Seeker Pointing and :':?.-.
-: . Tracking Some Cassical i'',
, Considerations '

.. e~4.."

:. :.: ,....:

':"i ~ ~ ~ anisms~In this chapter,frser we consider the design of pointing and tracking servomnech- "'".. '.

anims ora sekrusing an imaging FRwith a gimbaled platform from a
" ~more or less conventional perspective. We will specifically consider the appli- .,"
%,'" ~cation of classical, single input single output servo theory and the extendedr.':--
-. ':,. Kalman filter. Our intent is to establish a basis for meaningful comparison":--
" of the performance improvement achieved with the nonlinear stochastic con-
i . ~ ~~trol theory which is the main subject of this reseach project. Performance .": .
.. ... objectives for these systems are stated primarily in classical terms, and it is
"" ~essential to fully appreciate their intent and their implications in order to . ,
• . formulate well posed stochastic control problems which are meaningful in
", "5 the context of this application. '/.

0 . In the following paragraphs, we first discuss classical design methods and ,.,.-
- . then control design based on the extended Kalman filter. "--

k .' ,.-'.

2.1 Classical Servomechanism Design
In the classical SISO approach, the seeker boresight angles - elevation, 0,,..

and azimuth, ol , - ae treated as independent control loops. We consider applionly the elevation angle 0i loop. Figure 1 illustrates the general configuration,P-: of a ervo-tracker in which it is desired that the boresight elevation angle

4 . track the target line of sight elevation angle, p. The tracking error is defined

6,:-5.

thncotoldsinbae.oheetedd.ama ile.. -
° *5.,



• • --- , O (2.1) ", .

~The general control system objectives are twofold: (a) loop stability, and

(b) error regulation. Loop stability requires, of course, that the closed loop L.%

t'.P .

system eigenvalues lie in an acceptable region of the open left half plane,and it is also typically required that specified stability margins (usually

-"' '*.~ gain and phase margins) obtain. Error regulation usually refers to one or a
combination of the following types of error specifications:

. *'--: 1. Provide acceptable ultimate state error coefficients for prescribed de-
terministic target trajectories. A common example would be the re-
quirement that e(t) - 0 as t --+ oo when Gt(t) is a step or a ramp

, ,' function. It is also common to add other time response shape require-
ments, e.g., rise time and overshoot specifications.

2. With O, specified as a zero mean random signal with prescribed power .'*.

* , ..- density spectrum, provide an acceptable error power density spectrum .

- which is frequently specified as an upper bound over a given fre- .
quency band.

For example, a typical FLIR performance specification defines normal
+' "+' dynamic inputs to be those with line of sight rates less than 0.Srad/sec and + ..

angular accelerations less than 0.5rad/sec2 (see Interface Control Document "
5801647A, 30 September 1983). It further requires that the line of sight
angular deviations remain within the bounds indicated in Figure 2. We
will consider the design of a servomechanism to meet this deterministic
performance objective and then examine the implications of restating the
design objectives in terms of a stochastic control problem.

- . Figure 3 illustrates a choice of inner loop and series compensation which
allows the stated objectives to be achieved. Various choices of the parame-
ters satisfy the tracking requirement, and the final selection would be made'.
by analysis of the tradeoff between tracking performance and stability mar- -

' ~ . gins. Note that the performance specification as stated requires that the
control loop be at least a type 1 servomechanism. This guarantees zero ul-
timate state error following step input signals and bounded ultimate state
error following ramp input signals. The ramp input error bound is con-
trolled by the lead/lag ratio 2_. Increasing the type number of the loop or
increasing the lead/lag ratio will improve the ultimate state error response

,' but substantially reduce stability margins.

7
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Suppose now that we consider the following stochastic version of the 0

above design problem. The target line of sight elevation angle is modeled
by the stochastic differential equation

Tl = 'V (2.2)

where Y is a zero mean Gaussian white noise. The motivation for such a
model is provided in the report [2]. It is easy to show i.hat

8 E{e"}= a,(w)d. < 0 (2.3) .

only if the control loop is at least a type 2 servomechanism. This is an * '%_

obvious consequence of the fact that the target model is not asymptotically
stable. It has important implications, however, with respect to the formu-
lation of well-posed stochastic control problems for this class of models. ,.... , : ::

• .,.'. ~*....
2.2 Control Design Based on the Extended

Kalman Filter

In this section, we consider the application of the extended Kalman filter
(EKF) to seeker servomechanism design. The general configuration of the
control system is illustrated in Figure 4. The configuration shown is based on
an extension of linear disturbance accommodating/tracking servomechanism
theory (see Kwatny and Kalnitsky [3] and the references therein). The EKF" -
provides continuous, on-line estimates of a linear target/platform model in
relative coordinates, given observations involving nonlinear transformations
in the presence of additive measurement noise. These estimates are then
used by a robust disturbance accommodating servomechanism, where the .

controller is optimal for the case of full state observations. In the following
paragraphs, we define the model, describe the design of the EKF, and de-
scribe the computation of the feedforward matrix functions U(w) and X(w).

2.2.1 The Model *,**

The model details depend, of course, on the specific configuration of the _-

seeker. We consider a simple, reasonably generic situation. The FLIR is WA

mounted via two sets of gimbals on an inertial base and is therefore free to .-.

rotate about a fixed point 0 in inertial space about two axes. We define the
following three coordinate systems all with origin at 0:

,.. 4

.. 9.

- % .. %.

... ............ '.."... ," ... ... . , ,-
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1. the inertial frame with coordinates X, Y, Z

2. the target LOS frame with coordinates x, y, z___

3. the boresight LOS frame with coordinates x', yz

The relative position of any two reference frames can be defined in terms
of the conventional elevation angle 9 and azimuth angle 0&. We will use the
followine notatj.!n!:

1. G., '.-boresight LOS angles, relative angles between the boresight
*1. LOS frame and the inertial frame.

2. ft,ot - target LOS angles, relative angles between the target LOS
frame and the inertial frame. j.14 ~.

II~3. A~g, Aot - boresight/target deviation, relative angles between the tar-
get LOS frame and the boresight LOS frame.

For a system without a rotor and assuming that the inertia about the
- e axis and z' axis are the same, the equations of motion for the boresight

angles take the form

(2.44
~dt2r =

We assume that the torque r is related to the corresponding control
input uby the linear relation

I.The Target Kinematic Model 2.5

6The target kinematics in inertial space are defined by .-. *

7.' daT(t) = -AUT(t)dt + EdiY(t)

: VT (t) = UT(t) (2.6)

Pt)= VT13)

where the three vectors UT =target acceleration, VT =target velocity,
15T target position, andVA

A ~ E [

12



% 4

W(t) is a three-vector valued Gaussian process with independent compo-
nents with mean zero and

E(U~tlU~t2) 13, if tI=t 2
03, else

The Platform Kinematic Model
* A platform vibration model is included for resonant vibration character-
-' istics of the airframe

di(t) = ,AmW(t)dt + Bmd-v(t)

"m(t) = Tm.(t) (2.7)
,._ ~~~V,,, = (t) ,.." ,

15.0)= VmI(t)

where am = platform acceleration, Vm = platform velocity, Pm -platform %
position, w -a fictitious six-vector of states s.t.

ainz
8 2 ... ;

-., -ff = ~a m. a m

84 amu]

The model parameters are

A A[ o- -b
A,A AAl , = [ (2.8)

bA -a

0 0 0

S0 0 Tm 0 0 0 0 0

l0 0 0 0 1 0

0 0 00 0 c l:q

where a = 2Cb(1 - 2C)-i; b = 2xf; c = ar..b2 -f/sT ; f = resonant %

frequency in H,; 0 < < 1 damping ratio; ara peak-to-peak vibration
acceleration in [m/Sec 2 ]. K

13

...'..
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The Relative Target-Platform Kinematic Model
Since the dimensions of the state models for target and platform are not

the same, we augment the former with some trivial states as follows.
The platform acceleration state equation can be written from Equation

• (2.7) as ....I
--PA (P-  + PBmV(t) (2.9)

where P is a 6x6 permutation matrix

an a.." ,
82 ampy

.- am: (am,

4 182
an. 84 Iv , .

We next write an equivalent state space model for the target acceleration
as

r Le (iT [0 0] (0. W[ ] (t) (2.10)
,..Let ..jz:

IA WIa, 0 P Am P-1 I -PBm V"
0]. J.. (2.11)

'.p Thus the relative kinematics can be written in the form
- t) -- A rei(t) + Bra V.

S-e,(t) T,.I?(t) [I31O](t)

V,,,(t) = f,,,(t) (2.12)

1r4(t) .V.(t)

.14

AN., A-.q,9-..;5 '..' .14,. : .\. .,'_.' .' . \"' \ . .','':.'''\.: :. . -:-" ,\ . -.-,-: ''-''.1'1,.,-,-,",,,' -'.' ";,' .
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N~

where
-( ) 0 0 -b 0 0
0 -(A +a) 0 0 -b 0

Ari= 0 0 -a 0 0 -b
b 0 0 -a 0 0
0 b 0 0 -a 0
n 5 0 b 0 0 -a

V 00 0 0 0

0 0O 0 0 0
~~ ~Brai = 0 0 0

0 0 0-cOO
0 00 0 c

Finally, Equation (2.12) is written compactly as5.

ti(t) = ZW(t) + Wi>(t) (2.13)

where w is 12-vector, P'(t) is 6-vector. WL = ie, ri )T whereI03 13 0303 0
z 03 03 1303] 1W ---...

*06 Arei I r.

The observations: For simplicity of notation, take w = (x, y, z, w)' where'4
x,y,z are the relative position coordinates of target weight platform in inertial
frame fixed to the platform with z-axis pointing down.

The target location in the seeker boresight frame is given in terms of the
angles Os, gis.*

Pr' T(*',O 5  Y (2.14)I.z J
where the rotation matrix Tis given as

[ coaO~eost%.~ cose.Bint,' sinO5
T(*Lu, Oo) = -sin*, cosIJ', 0 (2.15)

1%-.ira0cost. -siflO~sif~1' coeO* J
coordinates of the target trackpoint in the FUIR image plane are given by

P2T(*,a (2.16)

P.' P. 0'.do.
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where

A 1 0 is a projection onto the y-z plane in the boresight frame

R(t) = N/.T2 + y2 + Z2 is range which is available by separate laser range
finder measurement

J0 is focal length

Thus the observation equation is in discrete time

.. "J=

[ r(XYZ)

t/(R) It 2 Tcs x (2.17)
rLO 0.. 0 1

-h(X, Y, Z) +

y is a 3-vector and the measurement noise

is 3-vector, Gaussian, zero mean, white noise process with Rk 

0. A',

2.2.2 The Extended Kalman Filter

To implement the EKF, we will need the 12xI2 Jacobian matrix

ah(w)

Let 1= (z, y, z)P and note that h depends only on ". Define the 3x3 matrix

( h(w)

The
H(w) [f(l),O3.(2.18)

16
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We implement the EKF in continuots. time but with the observations y(tk) ... l
available at discrete times only. (cf. Applied Optimal Estimation, A. Gelb,
pg. 188)

ti(t) = ZOV(t) (2.19)

i'(t) = ZP(t) + P(t)ZT + Q

Now integrate over tk < t < tt+1, with initial conditions given at tk by the
update equations: 7

"" (tk+) = ip(tk-) + Kkly(tk) - hk(1(tt-))] (2.20)

Define H; = H(w)lw = tr(t&+) then

P(tk+) = [I - KAHkIP(tk-) (2.21)

Kk = P(th-)HT[HkP(tk-)HT + Rk]- I (2.22)

and the matrix Q is defined 'y

Q -~7()?~)

where q#(t) = WiP(t).
Remarks:

1. Equation (2.19a) is a 12-dimensional linear differential equation with .

the same parameters, Z, as in Equation (2.13). It is the "on-line"
model.

2. Equation (2.19b) is a matrix-valued differential Riccati equation with
symmetric solution P(t), which must be propagated from tk to tk+.

3. Equation (2.20) is the update equation of the on-line model. It con-
tains the "true" nonlinearity h(.) as it appears in Equation (2.17) ex-
cept that the most current estimate of the range k(tk) is used (instead
of e.q. V/z 2 + !y + y z).

4. Equation (2.21) updates the Riccati matrix. -" -

5. Equation (2.22) updates the optimal gain Kk for the current update
evaluation.

17
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2.2.3 Computation of the Feedforward Matrices

Let z represent the boresight state, i.e.,

d d

.dt dt

and w the target state. We seek a control input U(t) and corresponding state

trajectory x(t) so that perfect tracking occurs. That is

I' Aet(t) 0 (2.23)
A*t(t) 0 (2.24)

Moreover, we seek U, T in the form '¢

V = U(w), - X(w) (2.25)

A(g): Exact tracking requires that

d d
dt dt

Recall the transformation from rectangular to polar coordinates (X, Y, Z) 4-,
" ~ ~~(R, Of, qQ,,: :N'

X = RcosEtcosPt (2.27)

Y = Rcosetsin''t

Z = Ri~

R =(z
2 + Y2 +z 2 (2.28)

O, = sin-e(Z/R)

Wt= tan1 ,(Y/X)

Note that Equations (2.28b) and (2.28c) immediately provide Of and T' as

functions of wo. We still need dO0(w) and d ,(w). To obtain these, let

V, = target inertial velocity in target LOS coordinates

VR = target inertial velocity in inertial frame coordinates '

".: .wt = target LOS frame angular velocity in target LOS coordinates

g' \ 18
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AThen we have 
p-4

d.paie d d (.9
tW o-'cosE)t (.9

.J.V, = T(-et, I't)VR (2.30)

A"" V, (2.31)

These lead to

?r lo -8fin't COS'It V

G(Ot,, 'Pt).- 0

LI Ge,'')R -tan(tcosI't -tanetsinP/ 1 (232

4., which provide the required relations.
11(j) :Exact tracking requires eLt, d = ddO, tI') Using the

equations of motion, we can write

dd d
KU os, (2.33)

d t t ( dt e, e, :.

But from Equation (2.32), we have

d d d 
.

t, 'P)t = I(aG/aedvnl(aG/aPdvRjGvR + GaR (2.34)

where aR? is the target acceleration. Thus, we obtain from (2.33) and (2.34) ..

1 u w = ,diag (1/%,1/K')diag (Je,Jp) (2.35) ,.

* . - ,-

.{. ZOG = G0e t g ) VR I VZGRt VR" -"R + G"lt

, '. ..

=.g19

equaionsof mtion wecan rite .5 .
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:.: Chapter 3 ""

Stochastic Control of '-
, ~Dynamical Systems.----,'":

"? ~ ~~In this Chapter, we summarize our research in stochastic control theory..".,.

• i ~~~relevant to tracking and missile guidance problems. Two classes of problems "..".,'j' are addressed: (i) optimal stochastic control of nonlinear systems with "fast" .'--.
and "slow" states; and (ii) stochastic scheduling and stability of systems .' -

:.:(linear and nonlinear) with Poisson noise disturbances (in the coefficients). v.-,*'>.. .*,

., ~~The work on (i) has led to a rather complete theory for singularly per- ,£',

turbed optimal stochastic control problems. The theory encompasses several -
classes of models, including systems with states taking values in bounded -

~~sets (e.g., angular variables) and systems with unbounded states. Stability .

%

criteria for the "fast" states play a key role in the second class of systems. '-",
-" ~The theory includes both absorbing (Dirichlet) and reflecting (Neumann) r,.¢
' " ~boundary conditions for systems with bounded state spaces. Its main fo- .#"

~~~cus is on the existence and nature of "composite" control laws for the fast ,,T,
and slow subsystems like those defined by Chow and Kokotovic for singu-

" '"- ~ ~~~larly perturbed deterministic control problems. One of the most important .,..,-..''

findings of this research is that composite control laws for singularly per-.''-.-i
_ ~ ~~~turbed stochastic control problems generally do not exist in the simple form "'"'':

, ~~suggested by the deterministic case. .e .'
_ ~In general, one cannot design an effective feedback control for the overall " !

system (fast and slow states) based on optimization of the natural limiting
! ~ ~This chapter was written by G.L. Blankenahip. It is based on joint work with A.- .

% _

Bensousan and C. W. Li. .

, .... .
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- ~system obtained by a standard asymptotic analysis of the model. That ':-'
~is, one cannot generally "separate the processes of asymptotic analysis and _.

optimization. In fact, the limiting optimal control law for the slow subsystem
-" retains a dependence on the states off the fast subsystem.

Stochastic control problems with fast and slow states are common in the
design and evaluation of tracking loops and missile guidance systems. They .--
occur whenever it is necessary to retain the interdependence of subsystems". ''-

"" ~operating on different time scales (e.g., sampling rates) such as the inter- -
i . ~action of sensor tracking loops and guidance control loops in autonomously..

. guided missiles.
The second class of problems treated in this chapter concerns stochastic",.';

.S.. e%

dynamical systems with Poisson noise disturbances. These systems arise as .
" ~models of physical processes with intermittent noise disturbances. We have .

obtained results on the control, scheduling, and stability of such systems.
., The control results are not discussed herese oasyme ptotichnlis are

primarily concerned with the derivation of optimality conditions and the so usse
verification that these conditions are well-posed. We use a constructive li-

~~~iting argument developed earlier for diffusion process models to obtain the .,.-optimal scheduling policy and cost as th tate are c of optimal e

scheduling problems in which a finite number of switchings are permitted.
The optimality conditions for these problems are uasi)uariationa inequali-

cties (QVI's) introduced for scheduling and inventory control by Bensoussan

Sand Lions. The properties of the Poisson noise disturbances cause the Qvris .
to be dfirst order" and fully nonlinear (in contrast to the classical case of,Le diffusion processes). As a result, their analysis requirets n s e red inere

- erdiate between those sed for diffusion systems (elliptic models) and deter -
iministic systems (first order). In particular, we use the method of btscosity
soutions introduced by Crandal and Lions to establish uniqueness of the

sheduoptimal cost when some of the switching costs are zero.
hWe also consider the asymptotic stability of linear systems with Poisson

.. noise coeficients. Criteria for stability of the moments of such systems havebeen available for some time (S. Marcus). As is the case with diffusion pro-

cesses, criteria for almost sure stability of the sample paths are much moreL delicate. In the present case, a key result is a deep theorem of Furstenburg

~~on the (ergodic) limit properties of products of random matrices. This result -
allows us to to develop an exact expression for the asymptotic, exponential

. nisgrowth (decay) rate of the paths in terms of an ergodc measure. We give.-
several examples to illustrate the nature of the computations and criteria.

.We also give tight estimates on the probability of a large deviation in a sta-

niiims
benaalbefrsm ie(.Mrus.A stecs ihdfuinpo
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ble process; and we give a condition for stabilization of linear systems with
state and control dependent Poisson noises.

In the first section we consider the problem of optimal stochastic control
of diffusion processes containing "fast" and "slow" dynamics. The systems
are considered on an unbounded state space. The analysis highlights the .
key role played by ergodicity of the fast state variables. We use a stochastic
stability theorem of Khas'minskii to determine the conditions under which
ergodicity holds and the optimal control problem is well posed. The lim- =€-
iting control problem obtained as the small parameter goes to zero retains -V
an interesting interdependence between fast and slow variables. The work
reported in the first section of this chapter is a summary of a portion of
(3]. That paper should be consulted for details of the proofs and for other %
related problems and results.

In the second section of this chapter we present a summary of some
work on the optimal stochastic scheduling of systems with jump process z. ..

parameters. The work described in that section is abstracted from the paper "." %
[24]. The main results are a characterization of the optimality conditions in .,?.- ,
terms of viscosity solutions to a class of Bellman equations.i In the third section of this chapter we present a summary of our research
on the stability properties of linear stochastic dynamical systems with Pois-

son noise disturbances as parameters. The main results in that section are
expressions for the exponential asymptotic growth (decay) rates of the solu-
tions.

*, 3.1 Stochastic Optimal Control of Systems with , -
Fast and Slow States ,:.<.

3.1.1 Introduction

In this section we address the following class of control problems. We have

a system governed by

dx =f(x, y, ,)dt + vidw

dy =g(x, y, v) t + -V db (3.1)

.(o) = X, Y(O)= Y.
• .. . _

where w and b are independent Wiener processes. The state z(t) represents
the slow system, while the state y(t) represents the fast system. The scaling

23 f, ..
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is such that the variations of the fast system per unit of time, in average as
,,$., well as in variance, are of order I/c. The dynamics are controlled via the

parameter v(t). There is full information and the objective is to minimize

the payoff '

J ,, (v ( .)) = E e-O ( '(t), y (t), v (t))dt (3.2)

4.where r denotes the first exit time of the process z from the boundary r
of a domain 0 usually taken to be smooth and bounded. (We will, in fact,
treat systems on unbounded domains.) Call

. E (X Y ) = in rfJ .(V ()) ,

then u, is the solution of the Bellman equation

u- f - A-u' +fu' = H(z,Du',y,-Dvt') (3.3)

U'=O VZEr ~: :.:4

with
H(z, p, y , q) inf JI(z, y, v) + p. f(z, y, v) (3.4)

IPEU~a

+q.g(z,v,v)]= inf L(,pyq)WI

We assume sufficient smoothness so that there exists a Borel map 1" (z, p, y, q) Z
with values in U.d such that, ,.H ( ,p , y ,) -- ( =E ,p , y , q , ) (3 .5 )

* We can then define an optimal feedback control for the problem by set-
ting

O. (2 , V) = 1(x, D =,, y, D , . ) (3.6)

"'.* " a n d t h e p r o c e s s
~.% . . >0 = 0,(X , Y ) (3.7)
% . is an optimal control for (3.2).

* ., Such systems arise in the design and analysis of tracking loop systems
where the fast subsystem corresponds to the dynamics of the sensor control

-: .loop and the slow subsystem corresponds to the dynamics of the platform. "
Many other applications have models which exhibit similar features.

a 24
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Our objective is to study the behavior of the equation (3.3) for e small,

and to interpret the results as a limit control problem approximating (3.1),

(3.2). Let us explain the type of results which one can expect.

.1 Proceed formally with an asymptotic expansion

to(--, Y) = uW) + C4O(Z 4)

- - A,4 + flu = H(, Dzu, y),Dvo) (3.8)

,.'which we try to match for any z, y by a convenient choice of u and .
Consider z in (3.8) as a parameter, as well as p = Dzu; set ,. ,

L(y, v) = l(z, y, v) + p. f (x, y, v)

G(Y, ) = g(, Y, V) (3.9)

P. H(yq)= if IL(y,v)+q.G(y,v)]

which also depend parametrically on z and p. 4...

One can then consider the Bellman equation of ergodic control relative
to (3.9). It is defined are follows: pick a constant X (constant with respect .
to g) and a function 4' such that

- AI, + x = H(y, DO4). (3.10)

Suppcse one can find such a pair X, 4 depending parametrically on z, p;
hence,

x = x(z,p). """"

-Au + 6u = x(z, Du), (3.11)
. (3.).then the pair u, 4 will satisfy (3.8). One can thus expect asolution of (3.11),

vanishing on the boundary r of 02 to be the limit of u'.
" ..- This procedure depends on the possibility of being able to solve ergodic

. "control problems of the type (3.10). This control problem itself is as follows:" ~Consider ..
Cos'e ", dy = G(y, v)dr + Vfdb, y(O) = 0 (3.12)

'u(v(.)) = lim Ef L(y, v)dr V .AN
thnT-.ao T

then in general
x = inf{k,(v(.))) 4:.

25
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independent of p. The interpretation of is more delicate. Pick a feedback
v(y) and consider the controlled state

dy = a(V, v(y))dr + v2db, y(O) = y. (3.13)

It seems inevitable to require ergodicity of the process y to define a well-
posed control problem.

This means that as r --# oo, p(r) behaves like a random variable following
a probability m'(') (y), depending on the choice of v(.) and of the parameter
entering into the definition of G. Suppose, moreover, that m is a probability %A

- density with respect to Lebesgue measure; it is possible to give another
interpretation of X as follows:

X = inff L(y,v(y))m'(')(y)dy}. (3.14)

.* In fact, taking account of
%* .% .-.J- J.

EL(y'),(r)) L(y, v(y))m'l()(y)dy as r --* c

one understands the relations between both interpretations of X. Formula
(3.14) permits a better interpretation of (3.11), which turns out to be a
Bellman equation for the slow system.

Indeed

x(,p) = inf{ (l(z, ,v())+p. f(x,,v(y))m()()dy)}

,%* .Setting.- -,

.jiz, v.)) = 1(z, y, v(y))m 3(')(!)dy"

" (=, (.1) f (z,y, v(y))m:(')(y)dy .-
.Z' V)-=fy

then the limit problem is described by , ,

inf J(v) = E.{j 1'1(z,v(.))dt}

S..". -.'; -

dz = j(z, v(.))dt + v~d (3.15)

Z(O) =0

26 _-._

? 7:-
'-, . .. -.- , - . o% -,-.-., ,. . .,,.,. -. . . ,-% . , . - - .. . - . -, .. . , .,,, , . .- ,-.-.



- L. S .,- - 4, U t. 4

0, .... 6'

11.. It is interesting to note that the set of controls in (3.15) is changed
from the original definition. One must consider feedback laws v - v(y). . *,
A control defined by a feedback with respect to the slow system is thus a

W function v(z, y). To justify these considerations, it is thus important to make .-

-% assumptions in order that the ergodicity of the process (3.13) is guaranteed. :

There must be one way or another a Markov chain defined on a compact set 4- .

.: for which Doeblin's theorem holds (see J.L. Doob [I]). This is achieved when
- one assumes that G is periodic in y together with the feedback or when one ....

considers instead of (3.13) a reflected diffusion. The first case was treated in
' ~ the paper [2]. In this section we shall consider the case of diffusions on the

whole space. Reflected diffusions are treated in [3]. This section contains

a treatment of most cases where a natural ergodic fast system governs the
evolution of the state. There are other situations where different techniques
of singular perturbations are used. Examples of such situations may be e,..

found in the paper of R. Jensen and P.L. Lions [4]. For other approaches to
ergodic control, see [5].

Acknowledgement: This is joint research with A. Bensoussan of IN-
RIA.

, 3.1.2 Ergodic control for diffusions In the whole space .,.

Assumptions - Notation "*-' ,.
, "" We consider

g(y, v) : V x U -. z

l(y, v): Rd x U -* (3.16)

" ~.. continuous and bounded

U d (compact) c U (3.17)

U a metric space. For a given feedback v(y), which is a Borel function
.- with values in Usd, we shall solve in a weak sense the stochastic differential

'4. equation -

dy = (Fy + g(y, v(y))dt + v2db,(t), y(O) = y. (3.18) .4'
The linear term Fy will be useful to ensure an ergodicity property later on

(F a stable matrix). The Brownian motion b, is defined through a Girsanov
transformation. We can find a system (0, A, F, M) such that (3.18) holds.'

' .We limit ourselves to feedback controls, since only those will appear in the singular . . .
.* *** perturbation problem that we shall eventually solve. Of course, this is not at all necessary

for the ergodic control itself.

27
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We then consider the function

,*(.)) = E." e-"(y(t),,,(t))dt (3.19)

where 
.-

v(t) =V t)),

and we set
( inf k,(v(.)). (3.20)

S... Setting A = -A - Fy D, we can assert that 4'. is the solution of

A0.~ + atO = H(y, DO.a) (3.21)

0,, bounded , ,. E W2 "'l(P),2 < p < oo

" " where W 2 ',(R") denotes a Sobolev space with weight

O= (3.22)

and
LP. = {z(y)lz,, E LP( ))

= {E E az LPz

' "i--aa E LP ' }"

Invariant measures

Since the diffusion y(-) does not lie in a compact set, some assumptions on .-.
the drift g are necessary to ensure ergodicity. We shall mainly use the results
of Khas'minskii [6]. We make the following assumption:

(A) There eziste a bounded amooth domain D and a function 0, which is
r"' ~continuou8 and locally bounded on Rd - D, ! 0, 0 E W,2'(Rod - D), and

AO -g(y, v) DOk 1,Vv, y E -D (3.23)

* ' > 0 4 -. as vij - c and bounded

In general, one can try to find 0 of the form

'(Y) -logQ(Y) + k (3.24) e

28
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where
Q(Y) =Myy+m.y+p (3.25)

-2

M symmetric and positive definite and Q > 0; and D is a region containing
the zeros of Q.

The following condition must hold to have (3.23):

"My + m 2  
- tr M (3.26)

IMy s + m.y+ p

., -(Fy + g(y, v)) . (My + m)
F.y

My .y + m .y + p,Vy E R" - D;

for a convenient choice of M,m, and p. For instance, if d = 2, we can take
4. M = I, m = 0, p = 0 and (3.24) is satisfied provided that, for instance P

F < A)I (3.27)2 -r<-*-

and D is a sufficiently large neighborhood of 0.
Consider a domain DI such that D c D1 , D 1 smooth and bounded. Let

r and r, be the boundaries of D,DI, respectively. We shall construct a
"% Marko chain on ri. Let zE Rd, we define

0'(x; fl) = inf{tly.(t) E D (3.28)

S..( z; fl) = inf{t > 0'(x; fl)I y(t) € D 1 (3.29)

In (3.28), (3.29) y.(t) is the diffusion (3.18) with initial condition z. Using
O(z), we can write

'E '(x) < O(). (3.30).

S,,This implies also that the exterior Dirichlet problem

Ail - g(y, v(y)). Dn = 0, VE Rd - D (3.31)

. r =h, hE Lo(r)

has a bounded solution given explicitly by
, q(x) =E:h(y.( (z))). (3.32)

29
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The Markov cnain on Ti is then constructed as follows. We define two

sequences of stopping times (relative to F%)

r~srI9r2 ..... '

r i r 21...

* such that

r-,, =inf~t > r I,y(t) j! DI}, ni > 1

r- n+1q inf {t >: r. Iy(t) E D), n>O0

The process y(t) in the brackets is the process defined by (3.18), i.e., with
~~ initial condition y. Let us set Y,, = y(r,,), n > 1. Then Yn E Ti and is a
~ Markov chain with transition probability defined by

E~' NY~OIFi = ~,e6(y(9(z))Iy~.(3.33)

~s. We define the following operator on Borel bounded functions on Ti

IiPO(x) = E.'Op((z))) (3.34)
We can give an analytic formula as follows. Consider the problem

A - g(y, v,(y)) - 0 in D1, djr 1  (3.35)

We first note that

II;. E(y 2 (9(x))) E~ .O()
~.. -i-.therefore taking account of (3.32) , we have

Pq$(z) = tl(z) (3.36)

9 where .i denotes the solution of (3.31) corresponding to the boundary con-
dition h = .Of course, in (3.36) x E ri are the only relevant points. We
then have

Lemma 1.1. The operator P i8 ergodic.
Proof. See [3] for the proof of this and all the remaining lemmas in this

* section.
From ergodic theory, it followsV .7x~a) !5 K1I01je'O", E T1  (3.37) .-.
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,..%. %where K, p are uniform with respect to the feedback control v(.), and x " ' .

denotes the invariant probability on rI.
It follows that, since

P'O(y) -- 1E (y(r.))

we can write

E.-(y(r,)) - <(q)r(dv)I Klle-'". (3.38)
fr ,We can then define a probability on Rd by the formula

I'. Afr, [,i fo (91 A (sy(t))dt]r(do)
A(y)d(y) = r E()(d) (3.39)

VA Borel bounded in "d.

Following Khas'minskii, one can then prove that the invariant probability is .Y
unique, has a density with respect to Lebesgue measure, denoted by m = m
which is the solution of

Am + div(mgV) = 0, m >0, (3.40)

we m(y)dy = 1. Ilk-
• .,. where -

A' = -A + div(F.).

Consider now the Cauchy problem

-z + Ax - "Dz =0 (3.41)

z(Y, 0) = O()

Lemma 1.2. We have

Z(Y, 1) !5 CIOl l , (3.42) I ' .

%I We deduce from Lemma 1.2 an estimate on the invariant probability
solution of (3.40). Using

f m"(y)z(y, 1)dy = J m"(y)O(y)dy

31
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we deduce easily that
rn. m(Y) 5 A, Vy, VV( (3.43)

It follows that inw is uniformly bounded in LP (Rd Vp, I p < oo. Let 19
be an element of CO R) we have

-A(mG) + div(m~g) + Fy - D(Orm) (3.44) .

=m(DG.- Fy - gdivf - OtrF)=f

and f ELP (Al), Vp, I<-p <oo.
From results on the Dirichiet problem, it follows that mg belongs to

W1.P(Od), Vp, 1 < p < oo. In particular, mO is continuous. Therefore, we
deduce that

m"'(y) : Ak > 0,Vy r= K, compact (3.45)

where the constant Akv does not depend on v(.).
Remark 1.2. The assumption (3.23) requires D nonempty. Otherwise

(3.23) and (3.40) yield f mdy = 0, which is impossible.
We also shall consider the following approximation to m. Let Bit be the

ball of radius R, centered at 0. Let us consider mjt defined by

Amj + div(mtgt ) + AmR =Ar~tm (3.46)

IL mRIOBR = 0

mjt E W"(R

in which A is sufficiently large so that

IC12 - .g9 + (A + !trF)92 > C(IC 2 +902)

V E 0 ,E R

Moreover, rjt(y) =r(y/R) where r(y) is smooth r(y) =0 for jyf 1,

r(y) =1, for jy 5 and 05r < 1.

We have
Lemma 1.3. injt the extension of mjt by 0 outside BR, converges to m

in H1(Rd) strongly and ti, rn2q converges monotonically increasing to m.

p. 32
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with 0/0/ bounded at oo

OrAO + X H(y, DO) (3.48)

Orobjective is to prove the following
Theorem 1.1. We assume (3.16), (3.17), (3.23). Then there is one and

only one 0 (up to an additive constant) and a scalar X such that (3.47),
(3.48) hold.

We begin with some preliminary steps. Let us consider a feedback v,,(.)
suhbha (c.f., (3.21)) we may write

AO., + aO. = I(y, v.) + Do. -g(y, v..). (3.49)I.' Then let m. be the invariant probability corresponding to the feedback v.
in equation (3.40). We then have

Lemma 1.4. The followuing relation hold.

f(a4O. - l(y, v.))mady 0 (3.50)

Lemma 1.5. We have e

14'ay) .4(i) x.(do)I 1 bi)i d (3.51)
10-M frrC 0(y) in D

where the constant does not depend on a, nor y.%
6 Proof of Theorem 1.1.

Eazistence
Let us set = -fA, ~( 7)ad) Then 11a/1011LO < C. Moreover,

from (3.21) we also have A

A0 + ao. + X. H(y, Do.), (3.52) .

in which

X, aJf #(tl)x.(do,).

4. 33
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It readily follows from (3.52) that

bounded in W 2 P"(Rd),2 < p oo,p > 0.

We can extract a subsequence such that

I - X0a- ~X

%,.. -- b in WP'( ) weakly.

We can assert that

4 , D. --* 4, Do6 pointwise,

hence,
- . H(y, D ,.) - H(y, DO) pointwise, .-

Noting that H(y, DO) is bounded in LP,A, we can pass to the limit in (3.52),
and the pair , X satisfies (3.47), (3.48).

See [3] for the proof of uniqueness.
.1... -.

. _w: 3.1.3 Singular perturbations with diffusions in the whole ,.-.
14 '4 space

Setting of the problem

Q We consider

f(zy,v): RI x Rd U R (3.53) ° '

Sg(z, Y, v): R' x Rd x U . d .--

l(z, Y, v): R x Rd x U-. R

% * 
continuous and bounded

".d compact C U (a metric space). (3.54)

Z On a convenient set (fl, A, F', P) we define a dynamic system, composed
I of a slow and a fast system described by the equations (3.1), with g replaced
" ... by Fy+g(z, y, v). The cost function is defined by (3.2), and we are interested
* :. in the behavior of the value function u, (z, y). It is given as the solution of

the Hamilton Jacobi Bellman equation (noting A. = A - Fy. D)

Z - u - Aue + 'U' (3.55)

34.
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=H(z, Dzue, y, -D~u.)
.,, ..,..,,..-: .. "'{. ~ ~u, = O, VX , Vy,,'...,

By W 2,p,.J(O x Rd) we mean in fact, (since 0 is bounded) the set of functions
z such that zp,(y) belongs to W 2 ,P(O X d).

We shall denote by v,(x, y) the optimal feedback. The assumption (3.23)
is replaced by

AO -g(z,y,v). DO-> 1,Vz, v, yE Rd-D (3.56) "."-

and the requirement that D, 4' have the same properties as in (3.23).

Approximation to the invariant measure

We shall consider the following invariant measures. For a feedback v(y), .-

-. consider mu (z, y) which is the solution of

, Am + div,(mg') = 0 (3.57)

*m > 0 fi m(z, y)dy = 1, M E H'(Rd), VX.

For a feedback v(z, y) we shall consider mv (x, y) which is the solution of

- cA~m, + A;m, + div,(mgu) = 0 (3.58)

amIr o, m, H1(O x Rd)

M, > 0,f me(, )dy= 1, Vz.

In particular, we shall call m, the solution of (3.58) corresponding to the

feedback v,(z, y) as defined in the preceding paragraph. The construction .
of the invariant probability m, is done in a way similar to that of i. Let .
us consider D, D1 as in (3.23). To avoid confusion in the notation, let us
call , r the respective boundaries of D, D, (instead of r, r,, since now r

"i denotes the boundary of 0). We consider the stochastic processes

dz = v'dw - xr(z, t) vdC, z(0) = z

dy Fy+g(x, y, v(x, y))dt+ VFdb.(t),y(O) y

- . ,.35



which are defined on a system (f), A, FI, P,V) and w, b are independent
9. standard Wiener processes.

.~. We define

o ii, ; [n) inf {tIY(t) E DI

' anDefine the sequence of stopping times To = 0, ri-, r'n+i as in section 1.2,
adteMarkov chain X, = x(r.), Yn = 1(rm) which is a Markov chain on

P. o x ri. We then define the linear operator on Borel bounded functions on
o x Ti by the relation

110 2~(x 41(8), y(e)). (3.59)

We deduce the analytic formula (c.f. (3.36))

~ ~ her - ',(z, Y) = TI, X Y 0, (3.60)

-c,7+An- g"-D ,(3.61)

on Ox (A" -D)

7Ilr = r = =0

cA. +. Ay v on 0 x D, (3.62)

Theergdicty f Pisproved like that of P (c.f. Lemnma 1.1). Let
96 (dx, do) be the corresponding invariant probability on o x r 1 We then

* define the probability p' (dx, dy) on 0 x R11 by the formula

~f fa 1 Jd A(z, y)dp'(z, y) (3.63)_

_ o Jr, [E."' jft "'") A(x(t), y(t))dtjxI(df, do7)

Jo fr, ESe(e, P)r(de, dri)

'Here E -9 for short.

36 -.
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for any A Borel bounded on 0 x Rd. Let us note that we can also give an
analytic formula for the quantity

&'(x, y) = A(z(t), y(t))dt ..:

namely
-e,.a + A a - g" -Da= A (3.64)

in O x (Rd - D)

: #lar, =  , ir = o.0.-cA.8S+ A,8- g jOD8= A in D,

/11 0,2 1 0= .

We have : -"d
Wh dA'(z, y) = m'(z, y)dxdy. (3.65)

Moreover, considering the Cauchy problem

az
. . z + Az -g" Dz =0 (3.66)

•-Ir = 0,z(xy,o) = A(z, y)

we have

fo fd Az, )m'(x, y)dxdy = fl44 bv-, ~z., y,~ th.IUy,

Vt> 0

Sand we deduce from this %

0 < A, < M,(XY) < A, (3.67)

Vz E O,Vy E K, compact of RZd AA:

with constants uniform with respect to v(.), the left constant (but not the

V , right) depending on the compact K.
To proceed we shall slightly reinforce the assumption (3.66) as follows

AO - koI01€1 - 1,Vy E R - D (3.68)

37
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, and D, @ have the same properties as in (3.23). In (3.68) ko is a constant
such that

1g(z, y, v)- < ko (3.69)

Note that (3.68) is satisfied in the example (3.27).
Lemma 2.1. Let B, be the ball of radius p in 21, and R, - B,.

Then
O J m (w,y)dzdy < A(p) (3.70)

where A(p) --+ 0 a. p -- oo.
* .'. Consider also as in (3.46) the solution mR of

- eA3 mR + A;mr, + div,(mcng) (3.71)

+Aet= ATRmc1R
mu Ir, m(RIOB. = 0

then we have
m,--* m in L' C H' as R - oo. (3.72)

A priori estimate
We shall need the approximation of u, given by

.U.- - -A~uR + UcR (3.73) '

= DzueR, Y, - DyuR)

u. = 0 on a(O x BR)

and
uCR -u ,s in W1 ff weakly and in L' weak star (3.74)

where !oc is meant only for the y variable. We shall need also a similar
approximation in the case of explicit feedbacks; in particular v,

Lemma 2.2. The following estimates hold

IDfuI o2s < C, I"IL- 5 C (3.75)

-Dyu,,, < C'

38
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Lemma 2.3. Let O(z) E H0o(O) c H2(O), then we have the inequality

me I mD.(u. - 0) I'dxdy (3.78)

' J nmIDu~jIdxdy

+ f J'Orm.(U. - q)2dzdy5 f Jf rNu.(A4 - I6k)dxdy

+/(D.012 + p,2)dx

Convergence

;. Lemma 2.4. Let us consider a stbsequence of u, such that

u4 - u in HI2.(O x Rd) weakly. (3.77)

Then u is a function of z only, belongs to HI(O), and the convergence (S.77)
is strong. _

We now identify the limit. Let us recall the definition of in" given in
(3.57). Define x(x,p) by the formula

x(x, p) = inf J ml'=,)(l(9 Y, V()) (3.78)

+p.- f( y, v(y)))dy ,-

and consider the Dirichlet problem

- Au + Ou = X(x, Du), (3.79)

- ulr = 0, u E W ..O)

We can then state the following
Theorem 2.1. We assume (3.53), (3.54) and (9.68). Then we have .

u, --+ u in H 2.o(O x Rd) strongly (3.80) Vq

See [3] for details of the proof.

,. . •" h.-
.. %
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Interpretation of the limit problem

.. %.. .

The limit problem is written as

- Au + flu = inf{!(z, v(.)) (3.81)
-- .}-r.-

+Du -(a, V(.))} ujr 0

where we have set

(, v(-)) ---- m' (x, y)l(z, y, v(y))dy (3.82)

(z, v(.)) = fJ My (z, y)f(x, y, v(y))dy.

It is clear that (3.81) is a Hamilton Jacobi Bellman equation for a slow
system whose drift if ?, and integral cost is 1. For this problem the set of
controls is the set of Borel functions v(y) with values in U.d. A feedback
on the slow system is thus still a function v(z, y). There exists an optimal
feedback for the limit problem, namely O(x, y) obtained in (3.6). Indeed
consider the function V defined in (3.5), then

. (z,y) = (z, Du, y, DA4)
,v ~. '-

is an optimal feedback for the limit problem. In fact, this is the feedback to
be applied on the real system as a surrogate for ve(Z, y) defined in (3.58).
One can show by techniques similar to those used in previous paragraphs to
obtain Theorem 2.1, that the corresponding cost function will converge as C
tends 0 to u in H'(O x Y). Note that unlike the deterministic situation the
optimal feedback for the limit problem is not a function of z only. In fact

(3.83) corresponds to the composite feedback of Chow-Kokotovic [7] (c.f.
.7 also 18] in the deterministic case).

3.2 Optimal Stochastic Scheduling of Systems with
Poisson Noises

In this section we consider the problem of optimal stochastic scheduling % %vr.
for nonlinear systems with Poisson noise disturbances and a performance
index including both operating costs and costs for scheduling changes. In _ 4

general, the value functions of the dynamic programming, quasi-variational
inequalities which define the optimality conditions for such problems are

40 ;
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not differentiable. However, we can treat them as 'viscosity solutions" as
pintroduced by Crandall and Lions. Existence and uniqueness questions are :-.,

studied from this point of view.

3.2.1 Introduction

Optimal scheduling problems arise in many contexts, including inventory r '
control systems and resource allocation problems in military systems plan- . -. 4

ning. These problems typically involve stochastic dynamical systems, ad-
mitting discrete state transitions at random times as control actions, and
incurring both switching costs and continuous running costs. Using the
dynamic programming principle, one can show that the optimality condi-
tions for these problems are expressed mathematically by quasi-variational , .I
inequalities (QVI). It is difficult to treat QVI's explicitly, and most of the
work has focussed on proving existence, uniqueness, and regularity of solu-
tions.

In our case, the state system is forced by Poisson noises. Since the
infinitesimal generator of the state process is first order and has a translation -
in the argument, the associated QVI is first order and fully nonlinear; and
so, the standard existence and uniqueness theory developed for diffusion - J..
parabolic systems does not apply. To treat the problem, we use the method
of viscosity solutions introduced by M. G. Crandall and P. L. Lions 19]. 0
Various properties of viscosity solutions are developed in Crandall - Evans -
Lions [11]. We use the approach in Capuzzo Dolcetta - Evans [12] developed
for deterministic systems.3

We prove that the value function u associated with the optimization J

S. problem is a viscosity solution of the corresponding (QVI). Existence of
solutions to the (QVI) is shown by using a discrete approximation to an '
associated penalized system and then using results for accretive operators
as in [15]. On the other hand, we use dynamic programming to obtain a
decreasing sequence of value functions ut optimal for controls with at most

* I switches, which converges uniformly. This approach was used to obtain
a maximum solution of certain (QVI's) in Menaldi [10-11] without nonde- '. -
generacy assumptions. In Blankenship - Menaldi [20], related problems were
treated involving the application of (QVI) to power generation systems with
scheduling delays. See also [21] [22] for a survey of viscosity methods for the

"Caes with white noise models are treated in [131 and [141, while control problems
".','+ for diffusion processee with jump@ are treated in Bensousan [I]. See also 116] for an , ._

introduction to the subject.

41 1
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control of diffusions.
The optimal stochastic control of linear regulator systems with Poisson

noise disturbances is considered in [23); stochastic stability properties of
linear systems with multiplicative Poisson noises are derived in [25]. See
also (261.

Problem Statement

Let (nl, F, P) be a probability space and F1, t > 0 a non-decreasing, right-
" continuous family of completed sub o-fields of F such that Ft T F := F, t >

0. Consider the general nonlinear dynamical system

A f dy(t) = g(yp(t),z (t))dt + h(y(t), a(t))dN(t)(t) (3.84)

where Ni(t), i = 1,..., m, are independent Poisson processes with intensities
A,, i = 1,...,m. a(t) is a right continuous, piecewise constant random
function with finite range 1,..., m, and is measurable with respect to Ft, t > .
0. Actually, a is an admissible control consisting of random switching times
Oi and random switching decisions d, such that 9, are adapted to F and d,
are F#, - measurable so that

' 0 ---- 01 ... < Oi-i : 0i !5 Oi+j,6i - q-oo a.s. .•-

d E {l,..., m},d # d.-I if O, < oo (3.85)

And so
a(t) d, ifOi 5 t < Oi+,,i ? 0

is indeed Ft - measurable.
Let the set of all admissible controls with initial setting d be

{A' := {(a = (9,, d.) satisfies the "above" properties (3.86)

with initial setting do = d). -.

* . We take the performance index to be

JA') := E.,t{f f(y 3 (t), a(t))ePgdt + "-k(d:., d)e"'

00.L f (y.(t), di_)e-O'dt + k(dI, d)e-Oi} (3.87)
j=1 -

,4 42
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where 8 > 0 is a discount factor and k(d, d) is the cost of switching from d
to asuch that'

k(d,a) > O if d a; k(d,d) = O (3.88)

k(d, ) < k(d, d) + k(d, a) if d d#.
Without losw of generality, we can define ko := mn nk(d, a), d 36d We -
assume f > 0, g and h are bounded and Lipschitz continuous

Iq(x,d)_< IIiqj < cc

Iq(z,d) - q(!,d)I Liz 1 (3.89)
with q =,gand h, for all z, 1 E t, d C 1,..., m.

Under these assumptions, (1.1) has a unique solution. Defining the value
function

ud(z) := inf J." (0),z x E dE {1,...,M} (3.90) .

we want to design an optimal control a* such that J-

,u(z) - J() = inf J=d(a). (3.91)
aEAd

Remark. No(g)(t) is an inhomogeneous Poisson process with intensity
function A(t)..

.-.

Summary of Results.

In subsection 2.2 we show that the optimal value function ud(z) in (3.21)
tmaybe defined as the limit of the value functions ut(z) of systems with a

finite number f of switches as - co (Theorem 2.3). We show that the
convergence is uniform (Theorem 2.5); and we derive two representations of
Ud(z) as the optimal value function (Theorems 2.6 and 2.7). We describe

the associated optimal (control) switching policy (Theorem 2.8), and we use
it to obtain an additional estimate on the convergence of u" to ud .

0.1 In subsection 2.3 we derive the QVI which must be satisfied by the
optimal value function (equation (3.113)). We show that the optimal value .

function is a viscosity solution of the QVI (Theorem 3.1). Then we show
'. that the solution is unique.

In subsection 2.4 we prove that the QVI has a viscosity solution by con-
structing a sequence of solutions to a penalized system (equation (3.119)),% I. A.

L 4""The case when the switching costs can be zero is treated in subsection 2.5.
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and proving that these solutions are uniformly bounded and uniformly Holder
~continuous (Theorem 4.4). We show that the limit of the sequence of solu-. , ~ tions to the penalized system is a viscosity solution of the QVI. 

,' -. -%. ,

~ ~~~In subsection 2.5 we consider the case when the switching costs vanish ,-...-

i i': ~ ~~(k(d, o in (3.19). In this case the optimal value function"..-.

J-) = 0for d 9

u is independent of the initial control configuration d (since we can switch"-""

without cost at any time), and it (formally) satisfies a Hamilton - Jacobi -- __

-" Bellman equation which is fully nonlinear in Vu. The method of viscosity

solutions is required to treat this case. We show that the optimal value ".

function corresponding to non-zero switching costs will converge to u as the.-

.- switching costs tend to zero, and that u is the unique viscosity solution ':

%' of the Hamilton - Jacobi - Bellman equation. The result is analogous to .

those in Capuzzo Dolcetta - Evans [121. Thus, the method of viscosity ,?.

-, ~ ~~solutions provides a complete framework for the treatment of the optimal'L ..

. ?. ~ ~control problem (3.16) - (3.23) over the full range of parameter values and :..

operating regimes....

i 3.2.2 Dynamic Programming and Preliminary Results.

P% Before using dynamic programming to investigate the properties of the value 'i

_-,- 

.%,

'-' function uli(z), we need some preliminary results. "

"% 
4

: ~ ~Lemma 2.1. For any topping time r which is adapted to Ft and any ':i

~measurable bounded function q, we have

" -' E[q(y(t + r))IP,] = EV.(,)q(yV.{,)(t)). (3.92) " '"'"

r. ~~Proof See (24] for the proof of this and all other lemmas and theorems... "-

I,. 
'.,

and pring ethat. ths.ou0n r nfrlbuddaduio yHle

t(ii) F o r a n ( etop p in tim e >t th i o en f l

0 ( z ) # f ( y( ) , I n et h i s c a s e t h e o pmUa(l v() ) e - u e f u

u isN o ta tio n .F o r t n n, d E , c sw it

.' u ( z) rn (' .T +.....,'..9 5"

4 stu

4_S oe

,:- . -. ... - . .-., . .. those... in. Capuzzo.- , Do- lcetta,. ,. - Ev., ..... .. - Thus. ., .-,. the method of viscosity.. .-,-... .. .. : ....?,',.
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Now, we want to use the dynamic programming principle to show there
exists a convergent sequence u4 of optimal solutions of the problem with r A
respect to controls which have at most t switches.

For each z E gnd 1,.. ., m, let

'" ~ ~u°(x) f=! f(y.(45), d)e-O'ds. (3.96) "' ,

0 h.

Notation. If u, v E C(Rn)m, then we say u _ v if ud > vd, Vd =
':' 1. . m ....

Define an operator rd : C(,Rn) "n -* C(R") by

rdu(z) inf E f (y.(s), d)e-Osda + e [UL](O(0)) (3.97)'

Here we understand the infimum is taken for all stopping times 0 > 0
adapted to F. If u 2_ v, then for each e > 0, there exists a stopping
time 0, 0 and d, Ff. - measurable such that

rd(x) > E { (.(s),d)e-O'ds + e-00-[uI(y (O,)) + k(dd.)] -f

> E j f(y.(s),d)e-Ods +e - P# 4(v y2 (8i 9)) + k(d, d C) -

> rv(z) - c.

Let e 0, we have Jdu > dv. Let 0 < t/ _ 1, then

rd[(1 - ,)U + 1"V"I- -
= inf E f(y8(s), d)e-ds + e-OIM[(1 - r/)u + .v-(y.(0))

inf E f(y.(s), d)e-ds + e- {( - r/)Md[u](yz(0))

> (1 -7)rdu(x) +7rdv().

Thus, rd is a non-decreasing, concave function.

45 t"-",

. N
KA,45 .-*.'".'
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P Suppose we are given - We can define

ud(Z) =ru_ I(). (3.98) .
Since u4(z) = rj uo(z) _ u0(z), then by the non-decreasing property of rd ,"':'::
we have uI(z) = r'luo(z) - ruo(z), and so -"-:

Thus, t4(z) converges. We can define "' -

P=(z) u= l ,(x) (3.100). ..'.
L-.oo "-.3-

Theorem 2.3.

t4(z) inf{4Jfd(at)Il E Ad has at most t switches (3.101)

and thus
ud(z) = ud(z):= inf Jd(o). (3.102)

Lemma 2.4. For each 0 < -y < min 1 1, %

I t(Z) - ut( 5) < C.,lz - !1" (3.103) %

for all I < I < oo and z,& E p.n with

2 iIXyL( (3.104)e., 'L(1+ \Max,)""--

where
= max{Al,..., A.}.

If > L(I + A,,,), then -1 can be taken to be 1.
Remark. Since Ni has independent increments, then F. is independent

of any sub if-field generated by Ni(t) - Ni(s), a < t, i = 1,..., m, so that for

E[I(t) - -'(t)l IF] < I-1(s) - Y(,)IeC(1+A---4(t-).

Thus,
Tulu% -(s)) u'(1-(s))l :5 C-,l(s) - (s)l' a.s.

Remark. If k0 > Il I/# , then uo(z) is the optimal solution, i.e., no ¢- :i
switching occurs.

.- 6.
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We can obtain the following estimate by the method in [18] [19].
Theorem 2.5. ff0 < ko < IIf Ifl, then

Hued - U'0II ! Wto11 (I -koilfH)e. (3.15) ,

Thus, ut I u.. uniformly. -
Theorem 2.6.

ud (X) = inf E{f f (y(s), d)e-sds + Md[u ](y.(O))e-P"}. (3.106)
0>0 " '

Theorem 2.7. If 3zo such that ud(zo) < Md[u](Xo), then 01 > 0 a.s ... **

and

u'(zo) = E{f f(y..(s),d)e- 8 ds + ud(yzo())e - } (3.107)

for all 0 < < 1.
Now, suppose we have a Holder continuous function u satisfying (3.21).

~ fi We can define an optimal policy a* = O, d, E Ad as follows.

go = 0, do = d,

If we are given O-l, ,-, then set

Oi := inf{ stopping time 0 > Oi9ju d- (y.(O)) = Mdj - [u](y(O))a.s.}

(3.108)
. ~If Oi < oo, set ..-

.. " d, = any FOg - measurable random variable d E {1,..., m},dO di-1  -. '.

such that

M-1 [u] (y.(Oi))= u(y. (0j)) + k(d,) a-s. (3.109)

and
",(t) controlled by decision di_ when _i-1 < t <9. -.

Theorem 2.8. The control policy a* defined by (3.108 and (3.109) is
optimal, i.e., ud(x) = J'(a) = min.EAd Jg(,,). In addition, 9, -. oo a.s.

Corollary 2.9. We have the additional estimate

-U :':I - - 11 <5 II112 + (3.110)
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S 3.2.3 Viscosity Solutions of the Quasi-Varlational Inequal-
ity (QVI).

- We want to derive necessary and sufficient conditions for the optimal solution
ud(z), z E Rd 1,..., m. Assume for the moment that the value functions
u t...,U' belong to Cl(R"). Then by the necessary condition in Lemma
2.2, we have

Eud(x) - ud(y'z(t)) <El !(f(y.,(s),d)e-#'d,"
t •t

+ u(y. t),(3.111)
I/J

and so, we obtain a differential form as t 0,

- g(z,d) . Vud(z) - Ad[ud~z+ h(x,d)) - ud(z)] < f(x,d) - ,3td(z) (3.112)

Vz E R n and d E 1,..., m. Combining (3.93), (3.107) and (3.112), we obtain

a quasi-variational inequality (QVI),. .. -

max{ u- g. Vu- A ud(.+hd) -d] ,, - Md[t]} - 0 (3.113)

on i", where
fd(.) gd.) g(.,d),hd(.) h(.,d). (3.114)

K.Note that (3.113) is a fully nonlinear first order partial differential equation
which does not admit a differentiable solution in general. But, we can treat

*- :it using the method of viscosity solutions, which was introduced by M.G. G.
:, ,. Crandall and P. L. Lions [91, and which was used for deterministic switching

problems by I. Capuzzo Dolcetta and L. C. Evans [12].
We denote by BUC(Z)m, the space of bounded, uniformly continuous

R 'M.uaLused functions on j".
Definition. A function u = (ud u' ) E C(f)m is said to be a

. viscosity solution of the (QVI) if for each d E (1,m. m} and each E E
Cl(RR) such that

(I) if ud - # attains a local maximum at z0 E i", then

max{,fud(zo) - gd(o). VO(zo) - Ad[u'(zo + h'(zo)) - u'(zo)] - f d(zo),

u'(Xo) - M[u](xo)) < 0 (3.115)

and
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(ii) if u # - attains a local minimum at zo E R', then _

; . max{ ud(zo) - gd(zo) • V 6(zo) - )hd[Ud(Z0 + hd(z0)) - ud(z0)J -/d(z 0), .?. :

* ud (zo) - Mda[uI(zo)} >0O. (3.116) "'-.-

?.. ~Theorem 3.1. Under the previous assumptions, the value function u =-..

~~~~~~~~~ud(z) :" A'inf J4i(a).-...' -" . .

is a viscosity solution of the (QVI) (3.113).

Before discussion the existence of a solution to the (QVI), we consider
,the conditions under wizh (3.113) admits a unique solution, so that any

functions constructed to satisfy (3.113) must be the optimal solution. , - -

-. Lemma 3.2. If u = (ul,...,u-) is any viscosity solution of (3.113),
then

u d(z) <M Md[u(z),VZ C Zn,dE {1,.. (3.117)

Theorem 3.3. If u = (ul,..., u-) and v = (vl,..., vm) are viscosity
Usolutions of (3.113). Then u -=v.

. ..-,. %

. . 3.2.4 Existence of Viscosity Solutions.

Now, we use a finite difference approximation to construct a sequence of
solutions which converges to the solution of (3.113).

Let p E C2 (£ n ) such that

S=,. z) =, X < 0
p(z) > 0, z > 0 (3.118)

* 0 < p'(z) 1,p (x) > 0 for z > 0

and p,(x) =p(z/c), x E R", . > 0.
Consider the penalized system for approximation.

S u,() - 1[U(Z + feg(z)) - U,(X)1 - Ad[1( + hd(X)) - u(X)1

- + ,p,(u4(z) - u4(z) - k(d,d)) = fd(z) (3.119)
20d

or
J . ,,( ) - [,, .T + eg ( )) -,, ( )j - ( )) -,, )l ,. .
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+ ! "p,(14(z) - u,(z) - k(d, ) d(z). (3.120)
add Co~o), _ Co% _"

We define operators A, 111, 112: C(Rf) -- C(/")" such that Au = .-* :.

(lu ,..., A-u), nlu = (nl,..., lru) and 1u= (171u,..., nl'u) where

Adu(z) := + egd(X))- ud(z)] (3.121)

ldUX _L dd(X h4 ()) _ dXl
f ITu+z) h- uz- )-u(z)] (3.122)

lu(z) : -pc(u(z) - u(z) - k(d, ). (3.123)

Definition. (i) An operator S : X -* X with domain D(S) is said to
be accretive on the real Banach space X if

I1z - . + Y[S(z) - S(I)II >_ lI1 - ill (3.124) ___

for all z, i E D(S), Vy > 0.

(ii) An operator S is said to be m - accretive on X if S is accretive on X
and the range R(I + 7 S) = X for all y > 0 (or equivalently for some y > 0).

The following lemma is from Evans [17].
Perturbation Lemma 4.1. If S is m-accretive on X = C(n)- and

- T.. T is accretive, Lipschitz continuous everywhere defined on X, then (S+ T) is %
m-accretive on X, in particular, the range .'I + S + T) = C() m .

*. Lemma 4.2. A is m-accretive on C().m.
Lemma 4.3. rl1 and 112 are accretive. .... .. "

By the Perturbation Lemma 4.1, A + H1 is m-accretive and so, for each
c > 0, we have a solution u, E C(RZ) m of (3.120).

- Theorem 4.4. .'

.. (1|) 0 !5 u ,(,) I IIl/, , c > 0, d E 1, . . ,"

(11) For each 0 < -j < min I),

:" lu, ' - u, (i)l !5 C-rl-- i1' ", Z, > 0, de 1 m)

with the same constant C., in (2.20). If# > L(1 + Am.x), we can take .

l**.-
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From the above lemma, u1, are uniformly bounded and uniformly Holder P-'
-- continuous. Then by the Arzela-Ascoli Theorem, there exists a subsequence

e such that ud -. ud E C(X-) for all d E I,...,m. The convergence is
uniform on each compact subset of R,. In fact, u is bounded and Holder
continuous with the same Holder exponent -y.

Theorem 4.5. u,, -, u locally iniformly in A" and u solves (3.113) in
the iecosity sense.

- Remark. In general, u is only Holder continuous. If we know u has
.1k, *.~ some regularity properties, say u' exists in some neighborhood, then one

can show u satisfies (3.113) in the ordinary sense. The point is that the "- e
' derivative of u is not continuous across characteristic curves.

3.2.5 The Case of Vanishing Switching Costs.
"* ."7 In the case when the switching costs vanish, k(d, 0 = 0 for some 6 # d in

(3.19), then the dynamics may be switched at any time without incurring a
cost; hence, the minimum cost does not depend on the initial control. That
is, :-'--
i = =.. u := (3.125)

0 If we follow the arguments used in the previous sections, we can show that
. iu is bounded and Holder continuous with the same Holder constant C. used

-.." in Lemma 2.4. If u were continuously differentiable on R", then by the
principle of dynamic programming, u would be (formally) a solution of the
Hamiltonian - Jacobi - Bellman equation

max {u - gd. Vu- Adu(. + h') - u] - fd} - 0 (3.126)

on PM. However, u is not always C1. By invoking the same arguments used '
,. in subsection 4, we can show that u is the unique viscosity solution of (3.126)

in the following sense:
S.5. Definition 5.1. A bounded and continuous function u on Rn is a vis- '.-s

cosity solution of (3.126) if for each 4) E Cl(,Rn) such that ..

(I) if u - 0 attains a local maximum at z0 E Rn, then ! Av

max {fu(zo) - g(zo)" . Vu(zo) (3.127)

and[(X + h(xo)) - u(zo)] - f d(o)} <0 .. '~~~and -"__
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(i) if u - attains a local minimum at zO E R, then

max {#U(Zo) - g(zo)d" VU(zo) (3.128)

~-,\d[U(ZO + ha(zo)) - u(zo)) - f'(zo)j _ 0,

- We now establish that the optimality system is closed; that is, each value
function corresponding to non-zero switching costs will converge to u as the
switching costs tend to zero. The result corresponds to a similar result in
Capuzzo Dolcetta - Evans [12]. a.-

Theorem 5.1. Suppose we have a set of switching costs {k,(d, d)} such
that

fr. k,(d,a)> 0 vd aE{,...,n} (3.129) .'

.. k,(d, ) <k ,(d, ) + k,(a, a),d a 5 a

'. For each e > 0 let u, = (U,..., Ulm) be the unique viscosity solution of the ..

corresponding QVI with switching costs {k,(d, ) and let u be the unique vie-
, ._ cosity solution of (3.126). If k.(d, a) -+ 0 as f --+ 0 for all d, E {1,...,m),

then ud --, u as --+0 for all de {1,...,m}. -

Acknowledgment. We would like to thank Professor L. C. Evans for
* his contributions to this portion of our work.

3.3 Almost Sure Stability of Linear Stochastic
L: Systems with Poisson Process Coefficients

In this section we consider the problem of determining the sample path
stability of a class of linear stochastic differential equations with point pro-
cess coefficients. Necessary and sufficient conditions are obtained which are
similar in spirit to those derived by Khas'minskii and Pinsky for diffusion
processes. The conditions are based on the deep theorems of Furstenburg on

S""the asymptotic behavior of products of random matrices. Estimates on the

probabilities of large deviations for stable processes are also given; together
with a result on the stabilization of unstable systems by feedback controls.

3.3.1 The Problem and Main Results.

5.- Congider the linear stochastic system

dz(t) Az(t)dt + j Bz(t)dN(t), (3.130)
i=O
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"(o) -zo '\ (0}, t > 0,

on the underlying probability space (0l, F, P) with A and Bi constant n x n
real matrices, and {N,(t), t 2 0), i - 1,...,m, independent Poisson pro-
ceases - specifically, one dimensional counting process with intensity A, > 0

* and right-continuous paths. Ni(t) E {0, 1, 2,...) counts the number of oc-
*" .. currences in [0, t]. We are interested in the almost sure stability properties S'

of the solutions of (3.130). That is, if j. is any norm on p" (. is the
induced matrix norm), we would like to characterize the asymptotic expo-
nential growth rate

limilm - log (3.131)-,O ,T t ( lol - -0
if it exists.

This problem is the analog of the one considered by Khas'minshii [27]
1% and Pinsky [28] for diffusion processes, and by Loparo and Blankenship [29]

for systems with jump process coefficients. Like previous results, the expres-
sion given here for the growth rate is not an explicit, readily computable
one, except in simple cases. The stability properties of the moments of theh. solution of (3.130) were considered by Marcus [30] [31] (see also [32]). Ex-
plicit stability criteria are possible for the moments. Related results on the
optimal control and scheduling of systems with Poisson noises are given in
[231 [24]. See also [26].

The system (3.130) is interpreted in terms of the integral equation

ftt
z(t) = zo + Az(a)ds + Bz(s)dN,(s) (3.132)

S Jo Jo

with the stochastic integral defined by the calculus explained in [31][33].5
Let {ri,j 2! 1) be the interarrival times and t= = r +... + r be the
occurrence time for the Poisson process Ni(t). Then

B(O)dN() , N,(t) 0 (3.133)fo .' (It)d~ Bi x(t'-) N, (t) 2! 1. ,..'

Now, let (ri,j _ 1) be the interarrival times of the sum process N(t) =
NI(t) + + N.(t) with intensity A = Al + .. +- A., and py be the process
indicating which N, under went an increment at the occurrence time ti -
r + ... + ri. We assume the probability of multiple, simultaneous jumps is

$We could also treat some of the more complicated point process models in 1311 1331,
but the main idea are best conveyed by the simple case considered here.
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zero. The process x(t), t 0 exists, has right continuous paths, and jumps
at ti,j = 1, 2,... If we set Di = I + Bi, then

z(t) = e(A(t-tN())DN() ... Dvie(Ar1)zo. (3.134)

This expression is the basis of our treatment of the almost sure stability
problem. Its composition as a product of random matrices directed our
attention to the work of Furstenberg and Kesten 1351, Grenander [36 and

. Furstenberg [381-[411 on the limits of products of random matrices.
. ""Our main result is based on the following observations. First, for each, =

I,..., m, the {r;,j 2! 1) are independent and exponentially distributed with *. -s,.,
parameter Ai. The random processes {ry,#u,j _ 1) depend in a complex
way on (ri,i = 1,...,m,j > 1}. However, {ri,i > 1} and {#p,j _ 1) are
independent and form independent, identically distributed sequences. This
follows from the presumed independence of the {Ni(t), i - 1,..., m); see
[25]. As a consequence, we have the following: .::.

Theorem (Stability). Consider the system (3.130) with the stated
assamptionas on the processes Ni(t), i = 1,..., m. Then -7-A

and = lim Elog[D ..ukeA.Due <a : (3.135) ." P-

~~~~exists and . "
Sr= lim IlogJJD,,,ukeArh... D,,,uueA,,,, a.s. (3.136) """

The quantity r is the asymptotic ezponential growth rate of the process
S(t); that is,

0 z(t) e t for t large -I..

Hence, r > 0 implies almost sure instability and r < 0 corresponds to almost
* sure asymptotic stability. This result is proved in section 3 of (251.

It is possible to obtain a more detailed description of the long term
* behavior of (z(t), t > 0) by examining the behavior of products of random

matrices acting on specific initial states z(O) = 0. The key questions are:
Does the limit of

''- 1log lID,.,e A'* ... Dp,e "iZol

exist? If it does, how is it related to the rate r in (3.136)? To treat these
questions, we generalize some results of Furstenburg, Kesten, Grenander and
others on random walks on semi-simple Lie groups to general semi-groups

4 .54
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(not necessarily groups since the terms Dk may be singular). This analysis
~~~~is given in section 4 of [251. The main result is as follows: -e '!

;{ ~Suppose p is the measure on the Borel sets B(R nxn) defined by ° _'

,(r) = P{Dpe A, E rjr E B(Rnxn).
"- Let SG be the closed semi-group generated by the support of 1A, i.e. '

• ,Y- ~ ~SG - smallest closed semi-group D (DieAl,o0 < t < oo, i M)1...m."'%i

Let v be an invariant measure for p; i.e., a solution of the integral equation

, / *' = V (3.137)..",".,.,

Let Qo be the collection of extremal invariant probability measures of p on - 4
M -Sn-u{0}.

Theorem For all P E Qo,

r, a A log Dep(At)ule-A'dtdL,(u) < infty (3.138)

and *-Ii.()1 (.19 . :

lim los =r a.s. (3.139)9\0 I ol )'.--

for all to E E °, an ergodic component corresponding to Y E Qo. Indeed,

L there are only finite different values, say, r, < r2 < ... < ri = r, < _ n.
Furthermore, if UEQoEo contains a basis of p-, then the system (3.130)
is asymptotically stable almost surely if re < 0, while the system (3.130) is
asymptotically unstable if rl > 0. In case rI < 0 and ri > 0, then the stability
of the system depends on the initial state zo.

To apply these theorems to a specific problem, one must determine r or at
least its sign; or, more generally, the collection Qo must be constructed and
r, computed. If the semi-group SG is transient or irreducible, then r' will .'<..-:

"" be independent of v (even though there may be many ergodic components).
(See Theorem 4.10 and Corollary 4.11 of [25].) In this case a theorem of

• ", Furstenburg ([381, Theorem 8.6) may be used to determine the sign of r, = r.
Application of this result to specific systems requires a close analysis of the
geometric structure of the semi-group associated with those systems. Several
examples are given in the next subsection to illustrate the techniques.

%' " Two final results of interest in engineering practice concern the occurence %
. -" of large deviations in the paths of {z(t), t > 0) of a stable system (3.130)

and the ability to stabilize a system like (3.130) with feedback controls.
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The following result is proved in section 5 of [25].

Theorem (Large deviations). If the system (3.130) is asymptotically
stable with r~, < 0, then there exist constants M(zO, R) and r,,, < -1 < 0

suhtht P~sups : tjz(s)j : R}:5 M(xo,R)e'yt,t > 0. (3.140)

The constants may be determined rather precisely, see [25] for details.
Theorem (Stabilization). The control system with state and control -

dependent Poisson noises %

dz(t) = Ax(t)dt + Bu(t)dt + Cz(t)dNi(t) + Du(t)dN2 (t) (3.141) ~A

is stabilized by the linear feedback control u(t) = -Kz(t) almost surely where %' .
rdK is any matrix such that

log I + )C(ABK~lI -Adt (.142

00

+1\2 J log 1(I - DK)e(AB1K)t I Ie-"dt < 0
iwhere A, is the intensity of N, (t) and A is the intensity of N(t) N, N(t) +

N2(t). If D =0 (no control dependent noise) and (A, B) is controllable, i.e.,

rank IIIB,AB,. .. , A n-B] = n

then (3.141) is stabilized by any mat rix Kjor which the cigenvalue8 of A-BK .d.

lie to the left of *(a) = -,\IlogjI+ C111 in the complex plane.

3.3.2 Examples and Applications.

We would like to use some examples to show how to apply our theorems to
determine stability properties of specific systems. As we shall see, in many
came, it is difficult to find the necessary invariant measure because it is
associated with an integral equation with shift arguments. It is difficult to
evaluate a solution from this equation, although it exists.

Example 2.1. Consider the simple system

i% k (1dx(t) = x' (t)dt + - x(t)dN(t) (3.143)

Nr where N(t) is a Poisson process with intensity X > 0. Then

CMt - et cow sin wt
-sin wt coswt

I1
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D=I+B=c( 1 ) 0 0"

In this case, DeAt eAt D and

.'. SG = smallest semi-group containing DeAt,0 < t < cc "..,

where i is the probability measure on SG with density function Ae- t, t > 0

at each element DeAt . Since D is non-singular, we can take M = S0, the
unit circle. In order to solve v = p * v, we let r E Borel set B(S°),

SGxSo X~g x)diA(g)dv(z) 
%

f -oV(C(_A.}D_ 1 o r)Ae-A'dt. (3.144)

For x E r, x (cosfsint)T for some 9 >0 and let

h = x"(At~Y~z= (Cos lt - sinl 1 (o 1' (Cos 0
,.sin t c t a 1 0 sin 0.

1 lkt (- sin(fnt -9)

=0(1 -e0-" kcos~ft- o) •";:

Let be an angle between the p and zl-axis. Then
•, -c ( t - 8)

tan 4 = = - cot(wt - 0). (3.145)-" . . - sin(Wt - O) ""
" : : ~Differentiating (3.145), we get , .

sec' do= -csc(wt - 8)d,

.1 *.so that from (3.145)

~~ d o -csc 2 (t - ) = -csc 2 (wt-9) - 1)
dsec 1 + cot2(wt - 0)

Suppose i' has density function f(0), 0 < 09< 2r. Thus, from (3.144), .

.(e)--f Jf()" 'A e - -'dt - f ()Ae-"'dt (3.146)
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and so

satisfies (3.146). Since SG is transitive on S, then the Haar measure 1(0)
with density f(0) is a unique invariant measure of 1. Thus,

rV= log Ig o zldu(g)dv(z)

At Cos
-" = I" log IDe o I Ae- 8ddt

Joo fo si / 2ff

'cc ( wt) _

= J log IOek cs(O - t) 2r

=log IcekIe \etdt

-"log a,.'"P ." +

Consequently, if k < A log Ial, the system (3.143) is asymptotically stable,
while for k > -A log IaI , the system (3.143) is asymptotically unstable.

Example 2.2 (Harmonic oscillator with damping).
Let y(t) be a point process, regarded as the formal derivative of a Poisson

I[ process N(t) with intensity A. Consider the second order system

i(t) + y(t) (t) + 1W[ + 4(t)lz(t)= 0 (3.147)

z(0), i(O) given, t > 0,w > 0, k > 0.

Let zi(t) = wz(t), X2 (t) = k(t) and z(t) = [zI(t), 2 (t)] ". Then
0 0 10

d(t) z(t)dt + -(k/w) z(t)dN(t) (3.148) 'a.-. o -1/<, -.. ,,.;;.,."

Z() (0) given.

• Set

-W 0 -(k/w) -1 r-PIWP
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and

_=+B Deex~ ..*',Let SG be the smallest closed senA-group containing De A , t ! 0. The-' ,-
;" probability measure p on SG has density \e - -\ , t > 0 at each element DeA t .  %, "~

Since D is singular, we take M SO U 0. It is easy to see that the only
"~ .y invariant set is

- {P 1 ( ,2), _- k ,,(0),oo)}

with invariant measure Y of p being defined by

v(P) = 1, 2 and v~(0) =0.

Note that SG o SO = E is invariant, so that the stability of the transient
set F = SO \ E also depends on ri, though E does not span R.. (See 125].)
Now, we calculate rv = r as follows. .'

.

-, .-..,,,

JS G.M=log gzjdp(g)dv(z)

= os -f log +DeP i-Aet-dt

.. I Cos - osin wt-Aee'dt ,.

... 4

- 0 ljog [co2wt 2kostint V si 2 wt %etd

=1t log !i(1 K)+!(i !co~w sin2wt Ac-Atdt
2 fh 12 +W 2 +2 -j - t]

I 1 .° log[ + cos(2t + a)]Ae-'dt (3.149)

a, .: 59.-."

a. a
2 2 ..2.

-m . . . .I k
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(w - kl)/ 2 2
Let

It log[1 + cos(2wt + rz)]Ae--\dt

= 0 (log[l + Cost] -(-a)/2wdt. (3.150)

Uigthe fact

] log(i + Cos t)dt 7 -r log 2,

we have
-~ $+2T
* log( + Cos t)dt =-2w log2, V,3.

Thus, let p =A/(2w),

11> -21rplog2E eP31 2ilog (3.151)
j=0 1

and
00

I11< -2iplog2 -27rpl= 2f(3.152)

.1I - C-a..

S:Thus, from (3.149), (3.150), (3.151) and (3.152), we have

_rplog2 I 1 V!( kp plog 2(31)
1- r, 2 logj( + -i) < - 2-p (313

Hence, if k < w, r., < 0. What happens for k > w? We have to calculate k
<a from (3.153) to determine the sign of r.. From (3.153), if

I 1(1+k2\ iplog 2
2:. 2 W -

or or
k w [22 plog2 1] 1/2(314
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then r, > 0 and the system (3.148) is asymptotically unstable; while for

1 1 + k2 x plog2
loge2P-1

or

2ezp e2plog -1 - 1 (3.155)

we have r,, < 0 and the system (3.148) becomes asymptotically stable.

Example 2.3 (Randomly coupled harmonic oscillators) (cf. [47]K for m = 1). Let y,,(t), i,j = 1,..., m, be independent processes which are
regarded as formal derivatives of independent Poisson processes N1, (t) with

intensities Ai, respectively. Consider the following stochastic system of m
coupled harmonic oscillators.

P,(t) + wz,(t) = b by,(t)zj(t) (3.156)

z(0),i(0) given, t 0, > O,i= 1,...,m.

Let zX- 1 (t) = Wz(t), zV(t) = i(t) and x = [z,. .. ,Z m]T. Then in stan- "- -

dard notation

dz(t) Az(t)dt + Bqz(t)dNi(t) (3.157)
* .

where ,.5 ,*-.

.A = diag (A,,. A.,}, A. 0

and all the entries of Bi, are zero except the entry C2i,2j.- - bij/wi . Set --

• "..I+, -+

Note that tr(A) = 0 and det(Dij) = 1, so we have Diiezp(At) E SL(2m).
We can define a measure ju on SL(2m) with density Aie- At , t > 0, A

%=Ali0" at each element DiieM. In this case, it is difficult to determine
an invariant measure because the corresponding integral equation is hard to

"* ~.solve. However, we can use a theorem of Furstenberg (Theorem 4.12 in [25]).. -
to show the rate r > 0. Let %

G = smallest subgroup containing DieA9, 0 < t < oo, i,j = 1,...,%m
= smallest subgroup containing Di,, i, j - 1, ... , m; eAt , 0 < t < 00.

A. 61
4""- *



ThnG may not be transitive on S"-.If we assume no two wi are 1
~~~equal, then the commutant E of the smallest subgroup G1I containing CA, t >__I .

.. 0 is isomorphic to C, i.e., T E E if 'r''-e.

. .. .-

T =T diag {Tj,, T }""" ''

o 
% .'*r

%: with . '-

-.. a ,.'.Pi.E
.5-P

Since Te A f eAT, and T and CA * are normal, they preserve their eigenspace. ......
06 Thus, the invariant subspaces V of G L are of the form no x... xtw, < m.

Befor e the coyant hypotheses of Furstenberg's t heorem, we need a , A-a--

non-degeneracy asumption: A

I4~w

S(A) For any index set J = are,..• j, t < m, there exists an i n J such
that th i 0 for some k E J. ae h rxm

By assumption (A), b 0 so that the entry eni,2:_l(Dij) = jbi/ i

tends to infinity as j -- oo. Thus, G is not compact.
Let an index set J = {Ji,...,j). By assumption (A), 3i V J such that

bj,6 0 for some k E J. Then DAV n V. Hence, G is irreducible.
Note that G1 is connected. There is no finite index subgroup of G1 .

-r Thus, any finite index subgroup H of G must contain G1 and some mixed
powers of {Dii}. Moreover, the irreducibility of G is due to sufficiently more
non-zero entries of D.,, not the exact value bji, so H is also irreducible.

In the cases where some wi are equal. The commutant E properly con-
tains C and the invariant subspaces of G1 are much more complicated.

Consequently, by Furstenburg's Theorem ([381, Theorem 8.6), r, = r > 0
and z(t) grows exponentially a.s. This implies that all the states of all
subsystems grow exponentially.

-Remark. If assumption (A) does not hold, the system can be subdivided
into proper subsystems E., which have property (A), and U. States of E, "•'
grow exponentially a.s. by the above arguments. The remaining subsystem

.* K depends on Ei and its state thus grows exponentially a.s. Hence, the
system of n coupled harmonic oscillators is asymptotically unsteble. - .

Example 2.4 (Random telegraph wave).
Let z(t) be random telegraph wave which takes on the value set Z =

{-1, 1} with transition probability satisfying

d (p,' ( A A~p '?" dt P-1 . -A", ',
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Then the differential equation for z(t) becomes

dz(t) = -2z(t)dN(t) (3.158)

X(o) = ±1

where N(t) is a Poisson process with intensity A. If we consider the state
process _

.. dz(t) = [k + wz(t)]z(t)dt (3.159)

z(0) = xO,W > 0,t > 0,

" *'. then using (3.158), (3.159) and the fact z 2 (t) = 1, we get -

= d(zz) = dzz + zdz (3.160) -

-2zzdN + z(k + wz)zdt

Wzdt + kzxdt - 2zzdN. "'.'

j Combining (3.159) and (3.160), we have " "

(4/ ( ( ) ( )
wd dt +( dN(t). (3.161)d( j (wk zz / 0 -J zz

Then,• (
expAt = k~t cosh wt sinh wt

sinh wt cosh wt '

Let SG be the smallest closed semi-group containing DeAt, 0 <_ t < co and
the measure p is defined on SG with density Ae - At, t > 0 at each element
DeAt. The corresponding invariant measure v is difficult to calculate exactly

and may not be unique since SG is not transitive on the circle SO. However,
'N. SG is irreducible. By Furstenburg's Theorem, the rate r is independent of

Let

X(t) DeAt ek cosh wt sinh tX;) D- sinh wt - cosh 
-wt

then
* IIX(t)11 = ekt(cosh 2wt + sinh 2wt) /2  e(+ '-4
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W,* %

and
ri = log IIX(t)I 2ACe-\tdt -.

*00

f '(k + w)t,\ tdt

., *%**k+w

* Again, we calculate

X(t 2)X(t 1 ) - • 'k(t+t) coshw(ti - t2 ) sinhw(ti - t 2 ) )
sinh w (t, - t2 ) coshw (ti - t 2 )

with

I"X(t2)X(tl)112  e kl+t12)[cosh w(ti - t2 ) + sinh w(t -t)]
"- :. -.-.

so that /0"/0"
%g

* i 2 = 1 10log IIX(t 2)X(ti)l12 Ac-I~dti~e-I~dt2

f =. f j[k(ti + t 2) + w(tI - t 2 )]AC-AtgdtIAe-At2dt 2

2k

In general,

ri = ... f log 1IX(tt) ... X(tI)IAe-x"dt... Ae--\tdt.

k. + , is odd
t t , Lis even

Thus,k

r lir r - -

," From (3.161), we know that stability of (3.159) is equivalent to that of -

(3.161). Hence, the system (3.159) is asymptotically stable for k < 0 while fr
4, .* it is asymptotically unstable for k > 0. This result shows that the ran-

dom telegraph process z(t) does not affect the stability of the corresponding
deterministic system.
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Chapter 4

Simultaneous Detection and .- 5.

Estimation for Diffusion
Process Signals

4.1 Abstract _, ; :

We consider the problem of simultaneous detection and estimation when-:4 the signals corresponding to the M different hypotheses can be modelled as

outputs of M distinct stochastic dynamical systems of the Ito type. Under
very mild assumptions on the models and on the cost structure, we show
that there exists a set of sufficient statistics for the simultaneous detection- - -'.e

estimation problem that can be computed recursively by linear equations. . -p..

Furthermore, we show that the structure of the detector and estimator is . -
completely determined by the cost structure. The methodology used em-
ploys recent advances in nonlinear filtering and stochastic control of partially
observed stochastic systems of the Ito type. Specific examples and applica-
tions in radar tracking and discrimination problems are discussed.

4.2 Introduction

.•In a typical present day radar environment, the radar receiver is subjected
' to radiation from various sources. A very important function of the radar -"- *,

receiver is its ability to discriminate between the various waveforms received
k% and select the desired one for further processing. Furthermore, an equally

important function of the receiver is to estimate important parameters of the ..- --
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radiating source from the received waveforms. Thus the receiver is required
Ioften to perform a "combined detection and estimation" function.

An abstract formulation of the combined detection and estimation prob-
lem in the language of statistical decision theory has been developed by

* Middleton and Esposito in [11. They correctly point out that optimal pro-
.' a.- cessing in such problems often requires the mutual coupling of the detection

and estimation algorithms. Although from the mathematical point of view
- estimation may be considered as a generalized detection problem, from an

'." . operational point of view, the two procedures are different: e.g., one usually
selects different cost functions for each and obtains different data processors
as a result. It is then correctly argued in [11 that it is practically appropriate
to retain the usual distinction between detection and estimation. There are
various ways that the detector and estimator can be coupled leading to a

:.4., hierarchy of complex processors. We describe here some important cases. ..

4.3 DetectLion-Oriented Estimation

Here, the detection operation is optimized with a priori knowledge of the '
existence of an estimator following it. The estimator is dependent on the

: .', detector's decision by being gated on only if the detector decides that the

desired signal is present. Here, the coupling is via cost terms that assess
the performance deterioration when the estimator is turned off while the
signal is present C.,1, or the estimator is turned on while the signal is not

-'" '4 present C.,O. Therefore, the average risks corresponding to the operations
of detection and estimation can be minimized separately. This leads to .

a detection test that is a modified generalized likelihood test. If the cost
terrm C,,,, C,o are constant, the coupling just reduces to a modification
of the threshold I . Since the detector's decision rule does not depend on
the estimate, the structure of the optimal estimator is not a function of the
data region specified by the decision rule of the detector's operation, when
the detector's decision is to accept the signal. In practical terms, this means...,.,

that we can choose to estimate only when the detector has decided that the
.lei desired signal is present.

.,

,,,,.
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~4.4 Coupled Detection-Estimation with Decision

~Rejection

Here, detection and estimation run in parallel and are followed by rejection:..
N", of the estimate if the detector's decision is not to accept the signal. Here, the." '

- --.. .

'. detector's cost depends on the value of the estimate. Typically, one solves .
the detection problem knowing the estimator. Then a second optimization is

performed over all estimators. This case usually results in relatively simple
estimators and complex highly nonlinear detectors [1].

Motivation for these problems stems from distributed target problems,
see in particular [2]-[7].

We concentrate in this section on a two hypotheses detection formulation, ,
but it is clear that the methods can be easily extended to M-ary detection .,.
problems. The two hypotheses are H0 = the received signal is a process a'

yot plus noise, HI = the received signal is a process yi, (different from ot)
Plus noise. Both processes are modeled as outputs of stochasItic dynamical '
systems of the diffusion type. The noise is the same in both cases. Due to

" this fact, we can assume that noise is eliminated from the mathematical
formulation of the problem of detection, while as we shall see its presence
may be crucial for the estimation problem. .

We did not study detectors with "learning", and we suggest this is a
promising extension of the results reported here. We note, however, that

14-our formalism includes general "learning" algorithms. Most of the work on
detectors with "learning" is problem specific and does not utilize dynamical
system models for the signals as we do. The major criticism for the work of - a-.

Middleton and Esposito [1] is that although they used a Bayesian approach
to the estimation problem, they considered nonrecursive solutions and de-
tection was coupled to estimation through cost structure which explicitly "-.'

considers coupling of the detection and estimation costs. Clearly nonrecur-
sive solutions are not appropriate for advanced sensors employed in guided
platforms. Furthermore, it would be unrealistic to assume that the designer
has such explicit knowledge of the functional couplings between detection
and estimation costs.

Several other authors have analyzed the problem. Scharf and Lytle [131 -
studied detection problems involving Gaussian noise of unknown level, thus

Sh- including noise parameters in the problem. As in [1], their solution is also

nonrecursive and focuses on the existence of uniformly most powerful tests. " "-
Spooner [14], [15] considered in detail unknown parameters in the noise

* model. Jaffer and Gupta [16], [17] consider the recursive Bayesian problem
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using a quadratic cost, Gauss-Markov processes and estimating only signal
parameters. Birdsall and Gobien [18] considered the problem of simultane-
ous detection and estimation from a Bayesian viewpoint. This work is close
in spirit with our approach, although the class of problems we can analyze by

. %. our methods is significantly wider. We also follow a Bayesian methodology
* during the initial phase of analysis. It becomes clear that by using Bayesian

methods one can analyze the problems under consideration in an inherently

intuitive, simple conceptual manner which can be easily obscured in highly .

structured methodologies utilizing specific detector structures and cost rela-
tionships. As a result, one can analyze the special problems described earlier
as specializations of a wider picture and framework. The results reported in ,*

[16] are limited by two important assumptions: (a) the observed data have
densities that display finite dimensional sufficient statistics under both hy- o

potheses for the unknown parameters, and (b) the unknown parameters form
a finite-dimensional vector. Both nonsequential and sequential problems are
analyzed in [18]. The most important result of [18] is the proof that through
a Bayesian approach both estimation and detection occur simultaneously,
with the detector using the a posteriori densities generated by two sepa-
rate estimators, one for each hypothesis. A particularly attractive feature is
that no assumptions are made on the estimation criterion and very flexible %

"V. assumptions are made on the detection criterion. When finite-dimensional ,

-. "sufficient statistics exist, the optimum processor partitions naturally into
three parts: a "primary" processor which is totally independent of a priori

distributions on the parameters, a "secondary" processor which modifies the
output according to the priors and solves the detection problem, and an es-
timator which uses the output of the other two in estimating the unknown
parameters. Only the estimator structure depends on cost functionals.

Since dynamical system models are not utilized to represent signals in
[181, there is great difficulty in analyzing the far more interesting sequen-
tial problem. It is for this reason that one is forced to make the limiting Ve.-..

assumptions mentioned above. In our approach, we consider diffusion type

models for the signals, and we utilize modern methods from nonlinear filter-
ing and stochastic control to analyze the problem [19]-[23]. Corresponding
results for Markov chain models can be easily obtained, but we only give
brief comments for such problems here.

"*'.,..,
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4.5 Nomenclature and Formulation of the Sequen-
tial Problem

In this section, we present a general formulation for the continuous time,
sequential, simultaneous detection and estimation problem when the .gnals
can be represented as outputs of diffusion type processes [20]. To simplify
notation, terminology and subsequent computations, we consider only the
scalar observation case here. All results extend to vector observations in" . a straight-forward manner. The observed data y(t) constitute, therefore, a-

real-valued scalar stochastic process.
The statistics of y(.) are not completely known. More specifically, they

depend on some parameters and some hypotheses. For simplicity, we shall
consider here only the binary hypotheses detection problem. Extensions to

s M-ary detction are trivial. We shall denote by H0 , H, the two mutually
"" exclusive and exhaustive hypotheses.

Under hypothesis Ho, the received data y(t) can be represented as:

dy(t) = h0(s0(t),90 )dt +dv(t) (4.1)
do(t) = fo(z°(t),O°)dt + g°(z°(t),O )dw°(t)

where 00 is a vector-valued unknown parameter that may be assumed fixed
or random throughout the problem. Here v(-), w(-) are independent, I-
dimensional and no-dimensional, respectively, standard Wiener processes ,-

L. [20]. In other words, when hypothesis H0 is true, the received data can be
thought of as the output of a stochastic dynamical system, corrupted by

.: " white Gaussian noise. h°, f°,g 0, 8o parameterize the nonlinear stochastic
system.

7. Similarly, when hypothesis HI is true, the received data y(t) can be
modelled as

dy(t) = h'(zx(t),01 )dt + dv(t) (4.2)

dz+(t) = f 1(t)," 1)dt + g1((t), e1)dw(t)

where now zI is n1 -dimensional. The vector parameters 00,01 may have '"

common components. For instance, in the classical 'noise or signal-plus-
noise' problem, any noise parameters clearly appear in both hypotheses
and would thus be common to 0, 01.We note that we have the same "observation noise v() under both
hypotheses. This is clearly the case in radar applications (see [6]). On

the other hand, when one is faced with state and parameter dependent

.. -74
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observation noises, a simple transformation translates the two models in the
form (4.1) (4.2). We shall assume that hi, fi, g', i = 0, 1, have sufficient
properties to guarantee existence and uniqueness of probability distribution-' ''

functions for y(.) under either hypothesis. As a minimal hypothesis, we
assume that the martingale problems for (4.1) and (4.2) are well posed ..

* *; [24] for all values of 0 , 01 in appropriate compact sets 00, 0 1 , respectively.
Furthermore, neither (4.1) nor (4.2) exhibit explosions [24] for any value of
the parameters. Often we shall make stronger assumptions such as existence
of strong solutions to (4.1) (4.2), or smoothness of fi, gi, hi,i = 0, 1, or

* existence of classical probability densities for y, under either hypothesis.
We shall denote by p,(., t 8 ),i = 0, 1, the probability density of y(t)

under hypothesis Hi and when the parameter obtains the value 6', i = 0, 1.
We shall denote the probability measures corresponding to y under HO or

" HI by p., respectively. As is well known, these are measures on the space of '--"%.%
continuous functions [24]. Finally, we note that although we have assumed
time invariant stochastic models in (4.1), (4.2) the results extend easily to I- ,
the time varying case.

Following a Bayesian approach, we assume a priori densities for the two
parameters 00, 0 1 which will be denoted by p 0(.,0), i = 0, 1 respectively.
Similarly initial densities for z°(0) and zI(0) are assumed known and inde-
pendent of 00, 01, respectively. They will be denoted by p4(., 0). The choice

* of these a priori densities is frequently a very interesting problem in applica-
tions, as they represent the designer's a priori knowledge about the models
used.

With these preliminaries, we can now formulate the problem. Let i'

denote as usual the portion of the observed sample path "up to time t",
i.e., yt = (y(8), a < t}. Given the observed data yt, we wish to design a
processor which at time t will optimally select simultaneously which of the

-. two hypotheses H0 or HI is true, and optimal estimates for the parameters
0 and 01. Moreover, the processor should operate recursively so as to permit
real-time implementation.

To complete the problem formulation, we need to specify costs for detec-
tion and estimation. Let c€(ii(t), ), i = 0, 1 be the penalty for "estimating"
9i, by ii(t) at time t. If ci is quadratic, we have the well known minimum _

variance estimates. Similarly, let "y(t) denote the decision, at time t, of '.

-'. wheter we declare hypothesis Ho or H 1 to hold. Then k(yI(t), i), i = 0, 1 will -
denote the penalty when the true hypothesis is H and we decide -y(t), at
time t. Obviously, there are infinitely many variations on the possible choice .

for a cost function. We shall consider only two possibilities in this report.
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Finite time average integral cost
f 

AT

if J = E 0o x'co(i°(t), O)Xlt, -I(t) 01 (4.3) ""

, "" + CJ(P (t),O0')Xlt, -I(t) =l1dt + Adk(-y(t), i)dt) ,..'

and infinite time average discounted cost.
•"-.'

Jd = E{ C(I, io, P1, z)e-"'dt} (4.4)

where C(-y, x, , z) is the integrand in (4.3) and a the discount rate. A., Ad t .'
are weights. The reasons for the characteristic functions appearing in (4.3),
(4.4) are rather obvious. The estimator will contribute cost only when uti-
lized, and it will be utilized for eO only when -I(t) = 0. We would like to point
out that this does not preclude both estimators from running continuously.
This scheme is used only to assess costs properly. i

The appropriate formulation of the problem is as a partially observable
stochastic control problem. The admissible controls are

k% I

io:R-0 0  (4.5)

P : R-O'

where all functions are nonanticipative with respect to y; i.e., measurable
w.r. to Ft': .

P()& (-)G() E j (4.6)

The cost is either (4.3) or (4.4). For the system dynamics, we proceed as
follows. The state equations are mixed consisting of the continuous compo-
nents

dz°(t) = f°(z°(t), 90 (t))dt + g°(z°(t), 90(t))du°(t) (4.7)
dzl(t) -- fl(zl(t),Ol(t))dt +gl(zl(t),Ol(t))dwl(t)

d""(t) = 0
log: ~d9' (t) = 0
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and the discrete component z(t) which can take only the values 0 or 1 and is A
constant. The initial densities for z0 , z 1, 00, 01 have already been described.
The initial probability vector for z(t) (which tracks which hypothesis is true)
is
ThePr{z(O) = 0} Po, Pr{z(O) = 1} = P1 (4.8)

The observations are '

dy(t) = (I - z(t)h°(z°(t), O°)dt + z(t)h'(z'(t),O1)dt + dv(t) (4.9) | ---

Since (4.7) are degenerate, there are some technical minor difficulties,
which can be circumvented, however, using recent techniques. This corn-
pletes the formulation of the problem.

4.6 Structure of the Optimal Processor 4...

Following recent results [25]-[29] in stochastic optimal control theory, we
have obtained first the following results that reduce the partially observed
stochastic control problem described in Section 4.5 to an equivalent, infinite
dimensional fully observed problem.

Theorem 1: There exist optimal -t, O1 for the stochastic optimal con-
trol problem (4.3) - (4.9).

Proof: This follows from the results of Fleming and Pardoux [27] and .. %'
Bismut [29]. The only difference is that due to the structure of the dynamics

here (i.e., they do not depend on the controls -y, ) we can show that
optimal controls exist in the class of strict sense controls as specified in A V-
Section 4.5 (i.e., -1(t), O(t), 61(t) are measurable with respect to FP).

We then introduce as in Fleming and Pardoux [27] the associated sep-
arated" stochastic control problem. In the separated stochastic control A
problem, the state at time t is a measure At on RN (where N = no +
nj + 2), which is un unnormalited conditional distribution of the state
z(t) - [zo(t), z(t), 90(t), j9(t), z(t)]T of the problem formulated in Section
4.5. The dynamics of the measure-valued process A, obey the Zakai equation
of nonlinear filtering [26]-[31], and (201.

In the sequel, we assume that all functions appearing in (4.1) - (4.9) are
bounded and continuous and that go, 1e, g', 11 are Lipschitz in z0 , 0, ml, 91,
respectively. Due to the discrete component z(t) of the state x(t), we have

to consider a two-dimensional measure valued process A0 , Al, where Ai is -..
the unnormalized conditional distribution of the state

F7.-
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(slight abuse of notation here) when hypothesis Hi is true, i = 0, 1. We fur-
ther assume that for i = 0, 1, the corresponding Zakai equation has a unique
solution which is absolutely continuous with respect to Lebesque measure; ..

i.e., we assume the existence of conditional unnormalized probability densi- . /..

ties for z(t) E RN given yr. For results on this, see [30], [31].
Let ui(z, t) denote the conditional probability density of x(t) given y.

when hypothesis Hi holds. Then u4(-, .) satisfies the Zakai equation

du' = Lu'dt + dy(t)h'u' , i = 0, 1 (4.10)

where L' is the formal adjoint to the infinitesimal generator of the ith com- "--'

"L ponent of (4.7); i.e., it has the form

N a2 N a
L a! (X) (4.11)

Here

a' 0i (i)T, [ b'o[' 9i (4.12)= y T¢ 0 0 0 0

To complete the description of the "separated" stochastic control problem, .- 
" '

let C(-y, x, z) denote the integrand in the cost definition (4.3). Then if "
we let -

u(',t) [u  (zOot) (4.13)

we can rewrite the cost (4.3) as

J1 (r) -E{ J C(t, bo, b', _) [u(z, t)T [] ]dzdt} (4.14)

where r is the policy corresponding to a particular selection of Y(.), 0°(.),
01(.), and EV is expectation with respect to y. Note that u depends explicitly

.. ~on y/. •.
• ,The separated problem is to choose a policy r which is a function of

u0 , u to minimize (4.14). This is a fully observed problem since u°, u1

-" satisfy (4.10) and enter directly into (4.14). We then have the following
very important result:

Theorem 2: Under the above assumptions, the optimal -f, &0 (which
exist according to Theorem 1) are functions of u°, u1 only. That is, they .
depend on yt only through the unnormalized conditional densities u°, ul.
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Proof: The proof follows from appropriate modifications of the results,,,?--
~~in 125]-[29] and will appear elsewhere. The significance of the result is that !

... it provides the basic structure of the optimal processor by identifying u°, ul : .

as the sufficient statistics for the original problem. Furthermore, the result" .-';"' '

;. ~~~is free from structural assumptions on the detection and estimation costs. .%,

4.'.-

" ~~and can be established in far greater generality than the results presented.--./

here may indicate.
In Figure I below, we give a pictorial illustration of the result. We basi- ---

",_ ~cally have to run two "filters' in parallel, one for each hypothesis. The out- -.. ,

put of each filter (which, by the way, is represented by the bilinear stochastic"--
• " ~~p.d.e. (4.10)) is the unnormalized conditional probability density of x0, 0 .,...or A*Y*.*.

" Fil~~te r u'Estimator : e~z;:.:
for H...

: ~y (t)I. " ;

FilIter u1 D etector L .
• for H l  Y : -.,

.. ,*44.---..

PofTero Fi gure 1

Figure illustrates the generic structure of the optimal processor zb t 0 1

, ~~given HO or HI . Each filter is driven directly by the observations. I_11as The estimator, detector and their coupling will depend on the explicit ." --

ifefcost structure. They are problem dependent. Their explicit functioning can
dabe computed as our final result indicpetes.sen
Theorem 3: The explicit dependence of (which is discrete valued),
b, on u , u can be determined by solving a variational inequality on the We basi-
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space of solutions of (4.10).
Proof: The result is rather technical. A complete proof will be given

elsewhere. It follows by appropriate modifications to the results of [26], [32].
This result opens the way for promising electronic implementation of the

optimal processor by the following steps: (1) solve numerically the resulting
variational inequality using the methods of [331, (2) implement the resulting --*
numerical algorithm by a special purpose, multiprocessor, VLSI device along
the lines of [341. In simple cost cases, explicit solutions of the variational
inequality can be obtained, of course.

".-

4.7 Motivation and Examples from Radar Track-
ing Loops

The primary motivation for the mathematical problem studied in Section
4.6 comes from design consideration of advanced (smart) sensors in guided
platforms. To be more specific, let us consider radar sensors.

The radar return from a scatterer carries (depending on the radar so-
phistication) significant information about a scatterer. For example, range,

- .~ Doppler extend, shape and extend, motion, of a scatterer can be extracted
from a radar return by appropriate processing. In today's dense environ-
ment, a very important function of an advanced processor is classification of
scatterers. This function is required, for example, by sensors participating

-.in a surveillance network (since threats must be classified, so that appropri-

ate response can be applied), in electronic warfare (since decoys and other
counter-measures can be designed to emulate target characteristics) and in

" *,. tracking radars (since the sensor often must develop a tracking path for a
designated priority target).

A related equally important function of a radar receiver is the estima-
.1 - tion of parameters embedded in the return signal. For example, pulse length, .4-

pulse repetition frequency, amplitude scintillation spectrum, conical scan fre-

" * -. quency, antenna pointing, surface roughness. The two problems of detection "
and estimation are indeed closely related, as explained earlier.

In our earlier work [2]-[5], we have developed statistical models for dis-
tributed scatterers which can represent accurately phenomena characteristic %_J"

..' " of distributed scatterer radar returns such as amplitude scintillation and an-
, "." gle noise or glint. In addition, we have developed similar statistical models

for the effects of multipath on radar returns, for sea clutter returns and for

0,so.

-. -. J .
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chaff cloud returns. The models developed in [2]-[51 are of the form

dx(t) = A(t,6)x(t)dt+ B(t,0)dw(t) (4.15)
dy(t) -- h(t, x(t), O)dt +dv(t) -'

- ' ~Furthermore, A, B, h are piecewise constant with respect to time since.."
- the models developed in [2]-[51 are piecewise stationary. For example in [2],
- .- ' ~we used models like (4.5) to describe the RCS scintillation for ships. The _:_-

,-, same type models can be used for other distributed targets such as tanks or
armored vehicles. For example, when the return appears spiky, indicating ,-

€" -i i " higher probability of strong return, an appropriate model is provided by

a lognormal process, where z(-) in (4.15) is scalar and h is chosen to be
ii ~ an exponential function of x. For chaff clouds, a more appropriate model..

¢" ~ ~~is provided by a Rayleigh process, where z(')is two dimensional, with the .!'-

e_

~~two components being identically distributed, independent Gaussian random '''.
:' ' processes and :-

h:., ._t) .- [X.(t)+,X

N2 W

,.'.. Clearly then, in target discrimination problems with distributed targets ..
' of this type, one encounters problems like those treated in Section 4.6. It is .
., important to note that since the first of (4.15) is linear, the corresponding"filtering and stochastic control problems described in Section 4.6 are def-

nitely more tractable. For further examples of this type, we refer the reader

:.x . to [21-[5].

-. , . "to specific problems in order to evaluate current design principles and more
. , ""importantly, in order to suggest new electronic implementations capable of"

performing in B dense, hostile environment. In particular, the methodology
themodlsdeveloped in Section 4.6 can be used to identify the cost structures that lead

e" to the specific hierarchies suggested in the introduction. frsi.Th

g' P' *.
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